{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "HY_fM8pgHYm0"
},
"source": [
"__Association Rules__ is an unsupervised technique to extract pattern or relation between items. The rule defines association between A and B as A => B i.e if A is purchased B is likely to be purchased.\n",
"\n",
"An association rule consists of an antecedent and a consequent.\n",
"\n",
"$${\\{Pen, Pencil\\}} \\to \\{Paper\\}$$\n",
"$$ {antecedent} \\to consequent$$\n",
"\n",
"For a given rule, `itemset` is the list of all the items in the antecedent and the consequent.\n",
"\n",
"$${itemset} \\to \\{Pen, Pencil, Paper\\}$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OphIUDXpHfWC"
},
"source": [
"### Measuring the strength of a rule\n",
"\n",
"**Support**\n",
"\n",
"Support is the fraction of the total number of transactions in which the itemset occurs.\n",
"\n",
"$$\n",
"{Support(\\{A\\} \\to \\{B\\}) = \\frac{Transactions\\ containing\\ both\\ A\\ and\\ B\"}{Total\\ number\\ of\\ transactions}}\n",
"$$\n",
"\n",
"**Confidence**\n",
"\n",
"Confidence is the conditional probability of occurrence of consequent given the antecedent.\n",
"\n",
"$$\n",
"{Confidence(\\{A\\} \\to \\{B\\}) = \\frac{Transactions\\ containing\\ both\\ A\\ and\\ B\"}{Transactions\\ containing\\ A}}\n",
"$$\n",
"\n",
"**Lift**\n",
"\n",
"Lift is a very literal term given to this measure. Think of it as the **`lift`** that {A} provides to our confidence for having {B} on the cart. To rephrase, lift is the rise in probability of having {B} on the cart with the knowledge of {A} being present over the probability of having {B} on the cart without any knowledge about presence of {A}. Mathematically,\n",
"\n",
"$$\n",
"{Lift(\\{A\\} \\to \\{B\\}) = ( \\frac{Transactions\\ containing\\ both\\ A\\ and\\ B}{Transactions\\ containing\\ A}} )/{(Fractions\\ of\\ transactions\\ containing\\ B )}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "8e4IigyLtz62"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from mlxtend.frequent_patterns import apriori, association_rules\n",
"from mlxtend.preprocessing import TransactionEncoder"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QaFFufO5uS3i",
"outputId": "c7155ad9-47c9-4a92-dd2c-2736d7301b31"
},
"outputs": [],
"source": [
"# Step 1: Read dataset\n",
"weblog_data = pd.read_csv('weblog.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WtBCTiFA1TY8"
},
"source": [
"Error code 500, also known as the Internal Server Error, is a common HTTP status code that indicates an issue on the web server’s side. It occurs when the server encounters an unexpected condition or configuration problem that prevents it from fulfilling the request made by the browser or client"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nJugxIVLvPqk",
"outputId": "36a21d24-de95-4a6a-9bed-631044e2790d"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
IP
\n",
"
Time
\n",
"
Method
\n",
"
Path
\n",
"
Status
\n",
"
Is_Downtime
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
192.168.1.103
\n",
"
01-01-2023 00:00
\n",
"
GET
\n",
"
/error
\n",
"
404
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
192.168.1.180
\n",
"
01-01-2023 00:01
\n",
"
GET
\n",
"
/logout
\n",
"
400
\n",
"
0
\n",
"
\n",
"
\n",
"
2
\n",
"
192.168.1.93
\n",
"
01-01-2023 00:02
\n",
"
POST
\n",
"
/logout
\n",
"
500
\n",
"
1
\n",
"
\n",
"
\n",
"
3
\n",
"
192.168.1.15
\n",
"
01-01-2023 00:03
\n",
"
PUT
\n",
"
/home
\n",
"
404
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
192.168.1.107
\n",
"
01-01-2023 00:04
\n",
"
GET
\n",
"
/login
\n",
"
401
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" IP Time Method Path Status Is_Downtime\n",
"0 192.168.1.103 01-01-2023 00:00 GET /error 404 0\n",
"1 192.168.1.180 01-01-2023 00:01 GET /logout 400 0\n",
"2 192.168.1.93 01-01-2023 00:02 POST /logout 500 1\n",
"3 192.168.1.15 01-01-2023 00:03 PUT /home 404 0\n",
"4 192.168.1.107 01-01-2023 00:04 GET /login 401 0"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Step 2: Data Preprocessing\n",
"\n",
"# Create a new column to identify whether the event was a system breakdown (e.g., Status code 500 or other server errors)\n",
"weblog_data['Is_Downtime'] = weblog_data['Status'].apply(lambda x: 1 if x == 500 else 0)\n",
"weblog_data.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4cnFs7BA8Oxs",
"outputId": "cd86c529-f9a2-45dc-eca6-3431278d3180"
},
"outputs": [],
"source": [
"# Step 3: Unsupervised Analysis - Finding events that occured around downtime\n",
"\n",
"# Filter only relevant columns for association rule mining\n",
"filtered_data = weblog_data[['Path', 'Is_Downtime']]\n",
"\n",
"# Convert the data into a list of transactions (each transaction is a list of events)\n",
"transactions = filtered_data.groupby(weblog_data['IP'])['Path'].apply(list).tolist()\n",
"\n",
"for i, (idx, downtime) in enumerate(weblog_data.groupby(weblog_data['IP'])['Is_Downtime'].max().items()):\n",
" if downtime == 1:\n",
" # Access the transactions list using the integer index 'i'\n",
" transactions[i].append('Is_Downtime')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" antecedents consequents \\\n",
"277 (/error, /home, /logout, /settings, /dashboard... (Is_Downtime) \n",
"252 (/error, /home, /logout, /settings, /dashboard) (Is_Downtime) \n",
"248 (/error, /home, /settings, /dashboard, /login) (Is_Downtime) \n",
"\n",
" support confidence lift \n",
"277 0.012048 0.750000 1.830882 \n",
"252 0.016064 0.666667 1.627451 \n",
"248 0.016064 0.800000 1.952941 "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Filter rules where the consequent has only one item\n",
"rules_with_single_consequent = downtime_rules[downtime_rules['consequents'].apply(lambda x: len(x) == 1)]\n",
"\n",
"# Print the rules with a single consequent item\n",
"rules_with_single_consequent"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Bx6RIYjPTERy"
},
"source": [
"Key Takeaways:\n",
"\n",
"- High Lift and High Confidence: The rules with high lift and high confidence are very useful for targeted monitorin as these are strong indicators of potential system downtime, despite having low support.\n",
"\n",
"- Low Support and Practical Use: All the rules have low support, which means that the particular combinations of events happen infrequently. However, these rules can be valuable for alerting and monitoring in specific scenarios. They suggest that rare combinations of events can significantly increase the likelihood of a system failure.\n",
"\n",
"- Targeted Alerts: Given the low support but high lift and confidence, these rules could be used to set up targeted alerts for when the specific combinations of events occur. This allows IT teams to intervene proactively, potentially preventing downtime."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "oWKxSIFNus4P",
"outputId": "29f645b9-0a82-4f05-a334-88554760f0e3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rules Showing Events That Occur Together:\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
antecedents
\n",
"
consequents
\n",
"
support
\n",
"
confidence
\n",
"
lift
\n",
"
\n",
" \n",
" \n",
"
\n",
"
93
\n",
"
(/error, /login)
\n",
"
(/dashboard, /logout)
\n",
"
0.052209
\n",
"
0.232143
\n",
"
1.204241
\n",
"
\n",
"
\n",
"
124
\n",
"
(/settings)
\n",
"
(/error, /dashboard, /logout)
\n",
"
0.052209
\n",
"
0.101562
\n",
"
1.053711
\n",
"
\n",
"
\n",
"
125
\n",
"
(/dashboard)
\n",
"
(/error, /settings, /logout)
\n",
"
0.052209
\n",
"
0.127451
\n",
"
1.023719
\n",
"
\n",
"
\n",
"
126
\n",
"
(/dashboard, /settings, /home)
\n",
"
(/logout)
\n",
"
0.052209
\n",
"
0.590909
\n",
"
1.226136
\n",
"
\n",
"
\n",
"
127
\n",
"
(/settings, /home, /logout)
\n",
"
(/dashboard)
\n",
"
0.052209
\n",
"
0.433333
\n",
"
1.057843
\n",
"
\n",
"
\n",
"
128
\n",
"
(/settings, /dashboard, /logout)
\n",
"
(/home)
\n",
"
0.052209
\n",
"
0.520000
\n",
"
1.156071
\n",
"
\n",
"
\n",
"
129
\n",
"
(/dashboard, /home, /logout)
\n",
"
(/settings)
\n",
"
0.052209
\n",
"
0.684211
\n",
"
1.331003
\n",
"
\n",
"
\n",
"
123
\n",
"
(/error)
\n",
"
(/settings, /dashboard, /logout)
\n",
"
0.052209
\n",
"
0.105691
\n",
"
1.052683
\n",
"
\n",
"
\n",
"
130
\n",
"
(/settings, /home)
\n",
"
(/dashboard, /logout)
\n",
"
0.052209
\n",
"
0.209677
\n",
"
1.087702
\n",
"
\n",
"
\n",
"
132
\n",
"
(/settings, /logout)
\n",
"
(/dashboard, /home)
\n",
"
0.052209
\n",
"
0.200000
\n",
"
1.276923
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" antecedents consequents \\\n",
"93 (/error, /login) (/dashboard, /logout) \n",
"124 (/settings) (/error, /dashboard, /logout) \n",
"125 (/dashboard) (/error, /settings, /logout) \n",
"126 (/dashboard, /settings, /home) (/logout) \n",
"127 (/settings, /home, /logout) (/dashboard) \n",
"128 (/settings, /dashboard, /logout) (/home) \n",
"129 (/dashboard, /home, /logout) (/settings) \n",
"123 (/error) (/settings, /dashboard, /logout) \n",
"130 (/settings, /home) (/dashboard, /logout) \n",
"132 (/settings, /logout) (/dashboard, /home) \n",
"\n",
" support confidence lift \n",
"93 0.052209 0.232143 1.204241 \n",
"124 0.052209 0.101562 1.053711 \n",
"125 0.052209 0.127451 1.023719 \n",
"126 0.052209 0.590909 1.226136 \n",
"127 0.052209 0.433333 1.057843 \n",
"128 0.052209 0.520000 1.156071 \n",
"129 0.052209 0.684211 1.331003 \n",
"123 0.052209 0.105691 1.052683 \n",
"130 0.052209 0.209677 1.087702 \n",
"132 0.052209 0.200000 1.276923 "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Step 4: Supervised Analysis - Finding Events That Occur Together\n",
"\n",
"# Filter only relevant columns for association rule mining\n",
"filtered_data = weblog_data[['Path']]\n",
"\n",
"# Convert the data into a list of transactions (each transaction is a list of events)\n",
"transactions = filtered_data.groupby(weblog_data['IP'])['Path'].apply(list).tolist()\n",
"\n",
"# Apply TransactionEncoder to prepare the dataset for Apriori\n",
"te = TransactionEncoder()\n",
"transaction_data = te.fit_transform(transactions)\n",
"transaction_df = pd.DataFrame(transaction_data, columns=te.columns_)\n",
"\n",
"# Apply the Apriori algorithm to find frequent itemsets with a lower support threshold\n",
"frequent_itemsets_supervised = apriori(transaction_df, min_support=0.05, use_colnames=True)\n",
"\n",
"# Generate association rules to discover events that occur together\n",
"supervised_rules = association_rules(frequent_itemsets_supervised, metric=\"lift\", min_threshold=1.0)\n",
"\n",
"# Limit the number of supervised rules to avoid overwhelming memory usage\n",
"supervised_rules = supervised_rules.sort_values(by='support').head(10)\n",
"#supervised_rules = supervised_rules.head(10)\n",
"\n",
"# Display the first few rules showing events that occur together\n",
"supervised_rules = supervised_rules[['antecedents', 'consequents', 'support', 'confidence', 'lift']]\n",
"print(\"Rules Showing Events That Occur Together:\")\n",
"supervised_rules"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 480
},
"id": "2LegLMC27MRs",
"outputId": "a9fe59a6-9a7c-4657-f7bd-0098dc5846d3"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
antecedents
\n",
"
consequents
\n",
"
support
\n",
"
confidence
\n",
"
lift
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
(/dashboard)
\n",
"
(/login)
\n",
"
0.212851
\n",
"
0.519608
\n",
"
1.051889
\n",
"
\n",
"
\n",
"
1
\n",
"
(/login)
\n",
"
(/dashboard)
\n",
"
0.212851
\n",
"
0.430894
\n",
"
1.051889
\n",
"
\n",
"
\n",
"
2
\n",
"
(Is_Downtime)
\n",
"
(/dashboard)
\n",
"
0.188755
\n",
"
0.460784
\n",
"
1.124856
\n",
"
\n",
"
\n",
"
3
\n",
"
(/dashboard)
\n",
"
(Is_Downtime)
\n",
"
0.188755
\n",
"
0.460784
\n",
"
1.124856
\n",
"
\n",
"
\n",
"
4
\n",
"
(/error)
\n",
"
(/home)
\n",
"
0.224900
\n",
"
0.455285
\n",
"
1.012195
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
1643
\n",
"
(/logout)
\n",
"
(/error, /home, /settings, Is_Downtime, /dashb...
\n",
"
0.012048
\n",
"
0.025000
\n",
"
1.556250
\n",
"
\n",
"
\n",
"
1644
\n",
"
(Is_Downtime)
\n",
"
(/error, /home, /logout, /settings, /dashboard...
\n",
"
0.012048
\n",
"
0.029412
\n",
"
1.830882
\n",
"
\n",
"
\n",
"
1645
\n",
"
(/settings)
\n",
"
(/error, /home, /logout, Is_Downtime, /dashboa...
\n",
"
0.012048
\n",
"
0.023438
\n",
"
1.458984
\n",
"
\n",
"
\n",
"
1646
\n",
"
(/dashboard)
\n",
"
(/error, /home, /settings, /logout, Is_Downtim...
\n",
"
0.012048
\n",
"
0.029412
\n",
"
1.464706
\n",
"
\n",
"
\n",
"
1647
\n",
"
(/login)
\n",
"
(/error, /home, /settings, /logout, Is_Downtim...
\n",
"
0.012048
\n",
"
0.024390
\n",
"
1.518293
\n",
"
\n",
" \n",
"
\n",
"
1648 rows × 5 columns
\n",
"
"
],
"text/plain": [
" antecedents consequents \\\n",
"0 (/dashboard) (/login) \n",
"1 (/login) (/dashboard) \n",
"2 (Is_Downtime) (/dashboard) \n",
"3 (/dashboard) (Is_Downtime) \n",
"4 (/error) (/home) \n",
"... ... ... \n",
"1643 (/logout) (/error, /home, /settings, Is_Downtime, /dashb... \n",
"1644 (Is_Downtime) (/error, /home, /logout, /settings, /dashboard... \n",
"1645 (/settings) (/error, /home, /logout, Is_Downtime, /dashboa... \n",
"1646 (/dashboard) (/error, /home, /settings, /logout, Is_Downtim... \n",
"1647 (/login) (/error, /home, /settings, /logout, Is_Downtim... \n",
"\n",
" support confidence lift \n",
"0 0.212851 0.519608 1.051889 \n",
"1 0.212851 0.430894 1.051889 \n",
"2 0.188755 0.460784 1.124856 \n",
"3 0.188755 0.460784 1.124856 \n",
"4 0.224900 0.455285 1.012195 \n",
"... ... ... ... \n",
"1643 0.012048 0.025000 1.556250 \n",
"1644 0.012048 0.029412 1.830882 \n",
"1645 0.012048 0.023438 1.458984 \n",
"1646 0.012048 0.029412 1.464706 \n",
"1647 0.012048 0.024390 1.518293 \n",
"\n",
"[1648 rows x 5 columns]"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rules = association_rules(frequent_itemsets_unsupervised, metric=\"lift\", min_threshold=1)\n",
"\n",
"rules = rules.loc[:,[\"antecedents\",\"consequents\",\"support\",\"confidence\",\"lift\"]]\n",
"\n",
"rules"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "z3aanHD1TOLu"
},
"source": [
"Key Takeaways:\n",
"\n",
"- Moderate Lift and Confidence:\n",
" - The lift values for most rules are in the range of 1.01 to 1.33, indicating a positive but not very strong correlation between antecedents and consequents.\n",
" - The rules with the highest lift and highest confidence are useful for targeted actions, such as understanding patterns where specific events are likely to occur together.\n",
"\n",
"- Low Confidence and Its Implications:\n",
" - Rules with low confidence have limited practical use for prediction because the likelihood of the consequent occurring given the antecedent is relatively low. These rules are not as actionable for predicting behavior.\n",
"\n",
"- Frequent Patterns with Co-occurring Events:\n",
" - The support for all rules is 5.2%, meaning that these combinations are not exceptionally rare but also not dominant. This makes these rules useful for understanding common paths or behaviors, but not critical for high-frequency actions.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Uv8bgTFfi8Fh"
},
"source": [
"Recommendations:\n",
"\n",
"1. Use Rules with High Lift and Confidence for Predictive Actions:\n",
"\n",
"- The rules with the highest lift and confidence values should be prioritized for monitoring. For instance, Rule 127 with a lift of 1.33 and confidence of 68.4% can be used to understand the likely occurrence of /settings after /dashboard, /logout, and /home.\n",
"\n",
"2. Consider Low-Confidence Rules for Further Analysis:\n",
"\n",
"- Low-confidence rules may indicate areas where additional factors influence the behavior. For instance, Rule 124 has a low confidence of 10.2%, suggesting that there are other influences on whether /dashboard, /logout, and /error occur after /settings.\n",
"\n",
"3. Investigate Event Sequences for System Understanding:\n",
"\n",
"- The analysis of these rules can provide insights into how users interact with the system, particularly for sequences of events. This can be valuable for improving user experience or preventing sequences that lead to undesired outcomes."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_cipwXpv8iYF",
"outputId": "5f9132eb-4a68-4d85-bd69-a8f3b2148138"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Goodness of Downtime Prediction Rules:\n",
" support confidence lift\n",
"285 0.012048 0.600000 2.873077\n",
"282 0.012048 0.500000 2.184211\n",
"277 0.012048 0.750000 1.830882\n",
"283 0.012048 0.600000 2.371429\n",
"256 0.016064 0.500000 1.976190\n",
"252 0.016064 0.666667 1.627451\n",
"250 0.016064 0.571429 2.258503\n",
"248 0.016064 0.800000 1.952941\n",
"244 0.016064 0.571429 2.736264\n",
"243 0.016064 0.500000 2.184211\n",
"\n",
"Goodness of High lift Rules (Events Occurring Together):\n",
" support confidence lift\n",
"93 0.052209 0.232143 1.204241\n",
"124 0.052209 0.101562 1.053711\n",
"125 0.052209 0.127451 1.023719\n",
"126 0.052209 0.590909 1.226136\n",
"127 0.052209 0.433333 1.057843\n",
"128 0.052209 0.520000 1.156071\n",
"129 0.052209 0.684211 1.331003\n",
"123 0.052209 0.105691 1.052683\n",
"130 0.052209 0.209677 1.087702\n",
"132 0.052209 0.200000 1.276923\n"
]
}
],
"source": [
"# Step 5: Goodness of Rules - Support, Confidence, and Lift\n",
"\n",
"# Evaluate the goodness of rules for both unsupervised and supervised rules\n",
"print(\"\\nGoodness of Downtime Prediction Rules:\")\n",
"print(downtime_rules[['support', 'confidence', 'lift']])\n",
"\n",
"print(\"\\nGoodness of High lift Rules (Events Occurring Together):\")\n",
"print(supervised_rules[['support', 'confidence', 'lift']])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fr9NDCgoWAo2"
},
"source": [
"Analysis:\n",
"\n",
"- Confidence for downtime prediction rules vary from 0.500 to 0.733\n",
" - Rule 72 has the highest confidence of 0.733, meaning there is a 73.3% chance of a downtime if all the antecedent conditions (/error, /home, /dashboard) are present.\n",
"\n",
"- Lift values are all greater than 1, indicating a positive correlation between the antecedent and consequent.\n",
" - Rule 72 has a lift of 1.790, suggesting that the combination of /error, /home, and /dashboard is almost 1.79 times more likely to lead to downtime compared to random occurrence.\n",
"\n",
"Actionable Insight:\n",
"\n",
"- Confidence for Supervised rules vary from 0.430 and 0.544.\n",
" - Rule 4 (/settings leading to /error) has the highest confidence, meaning that 54.47% of the time, users who visit /settings end up on /error, indicationg that users are often encountering issues when modifying settings.\n",
" - An area which needs improvement\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bPuXMW6f-NxS",
"outputId": "969e19be-263e-4ebf-ce2d-20db60cc7e84"
},
"outputs": [],
"source": [
"# Step 6: Save the Rules for Further Analysis\n",
"# Save the downtime prediction rules to a CSV file\n",
"downtime_rules.to_csv('weblog_downtime_prediction_rules.csv', index=False)\n",
"\n",
"# Save the supervised rules to a CSV file\n",
"supervised_rules.to_csv('weblog_events_occurring_together_rules.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "4O-mNGcm2M1Q",
"outputId": "8145d255-991a-4779-c1a9-4a46a8094465"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMQAAANICAYAAAAo5TPXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTZ/8G8DsJgbD3VBFcIO69BbWC4AZbra2rri5929r3bW1rrdbqW+3eddtqbW1xFnAgjtoKiBtxK6IyREAFAoTknN8fvMmPqTjgQLg/15VLSQ7n3CcJkHzzfZ5HJoqiCCIiIiIiIiIiogZCLnUAIiIiIiIiIiKi2sSCGBERERERERERNSgsiBERERERERERUYPCghgRERERERERETUoLIgREREREREREVGDwoIYERERERERERE1KCyIERERERERERFRg8KCGBERERERERERNSgsiBERERERERERUYPCghgRUT01evRomJub486dO1Vu89xzz0GpVCIjIwNr166FTCZDcnJyrWWsTHJyMmQyGdauXWu4rqazRUZG4oMPPqj0Ni8vL0yePLlGjvukHD9+HP7+/rC1tYVMJsMXX3xR5bYymQyvvvqq4evU1FR88MEHOHHiRM0HrQEymazMxdLSEq1bt8aCBQuQn58vdTyDyZMnw8rK6oHbqdVqfPDBB9i/f/8Dtw0ICKhw/pVdqnpu17TFixdj69atFa7X/zwnJCTUfqhyFi5cCD8/PwiCYLguKysLc+fOhZ+fHywtLWFrawtfX19MmDABp06dkjDtk7V//37IZLJqPdeepMmTJ8PLy+uB25V/fqtUKvj5+WHRokXQaDSPdOya/lsyYcIEjBo1qkb2TUREtc9E6gBERPRopk6diq1bt+KXX37Byy+/XOH2u3fvYsuWLRg2bBhcXV0xdOhQHD58GO7u7hKkvb+azhYZGYlvv/220sLBli1bYGNjUyPHfVJeeOEF5Ofn49dff4W9vX213mzqpaamYsGCBfDy8kLHjh1rLGNNGjNmDObMmQMAyMvLw4EDB7Bw4UKcOnUK4eHhEqd7OGq1GgsWLABQUhC4n++++w737t0zfB0REYFFixZhzZo18PX1NVzfuHHjGsn6IIsXL8aYMWPqbIEgNTUVS5cuxdq1ayGXl3wGnJeXh549eyIvLw///ve/0aFDBxQUFODChQvYvHkzTpw4gfbt20uc/Mno3LkzDh8+DD8/P6mjVKlZs2bYsGEDACAzMxMrV67EvHnzkJKSguXLl0ucrqIPPvgAvr6+iImJwcCBA6WOQ0REj4kFMSKieio4OBgeHh5YvXp1pQWxjRs3oqCgAFOnTgUAODs7w9nZubZjVouU2Tp16iTJcR9GYmIipk+fjuDgYKmjSMLV1RU9e/Y0fP3UU0/h2rVr2LBhAwoLC6FSqSRMV3PKFzLOnTsHAGjbti26du0qRaQ6Ra1Ww8LCosrbv/zyS9jZ2SE0NNRw3e+//45Lly4hJiYGAwYMKLP9G2+8UaaTrK7R6XTQarUwMzOr1vY2NjZlfm7qInNz8zIZg4OD4efnh3Xr1uGrr76qcz/bzZs3x5AhQ/Df//6XBTEiIiPAIZNERPWUQqHApEmTcPToUZw+fbrC7WvWrIG7u7uhiFLZUJLjx49j2LBhcHFxgZmZGTw8PDB06FDcuHEDQOXDG/XKD9W6dOkSpkyZgpYtW8LCwgKNGjXC8OHDK81WXvls+qE+lV1Kd0f99ttvCAwMhLu7O8zNzdG6dWu8/fbbZYbSTZ48Gd9++60hs/6iP1ZlQyZTUlLw/PPPG+6X1q1b49NPPy3zZll/33zyySf47LPP4O3tDSsrK/Tq1QuxsbEPPGegpNA1cuRI2NvbQ6VSoWPHjli3bl2F+0Wr1eL77783ZK+u/fv3o1u3bgCAKVOmVDrELiEhASNGjICDgwNUKhU6deqETZs2ldmPPkdMTAymT58OR0dH2NjYYOLEicjPz0d6ejqeeeYZ2NnZwd3dHW+++SaKi4vL7OP7779Hhw4dYGVlBWtra/j6+uKdd96p9rmUpx8+qlAoyly/evVqdOjQASqVCg4ODhg9ejTOnj1bZpuAgIBKu7MqG+p148YNjBkzBtbW1rCzs8Nzzz2HI0eOVPlzcenSJYSEhMDKygpNmjTBnDlzUFRUBKDkOaMv/C5YsMDweDzOkF1BELB06VL4+vrCzMwMLi4umDhxouFnWE8URSxevBhNmzaFSqVC165dsWfPnkrvi3v37uHNN9+Et7c3TE1N0ahRI7z22mtlfq5kMhny8/Oxbt06w3mU309ubi5eeuklODk5wdHREaGhoUhNTa1wDr/99ht69eoFS0tLWFlZISgoCMePHy+zjX5I6unTpxEYGAhra2sMGjSoyvtFo9Fg1apVGD9+vKE7DCgZLgmgym7U0ttWNfTvgw8+qPBzqB+q/OOPP6JVq1YwMzODn58ffv311wrfn56ejpkzZ6Jx48YwNTWFt7c3FixYAK1Wa9hG//tl6dKlWLRoEby9vWFmZoZNmzbB1NQU8+bNq7Dfc+fOQSaT4auvvgJQ+ZDJK1euYNy4cfDw8ICZmRlcXV0xaNCgCkOqq/OYACW/G3x8fAy/J3/66adK79fqMjExQceOHaHRaAzTATzM36GqREdHY9CgQbCxsYGFhQX69OmDvXv3ltkmMzMTM2bMQJMmTWBmZgZnZ2f06dMH0dHRZbabMGECoqOjcfny5Uc9TSIiqiNYECMiqsdeeOEFyGQyrF69usz1SUlJiI+Px6RJkyoUDPTy8/MxePBgZGRk4Ntvv8WePXvwxRdfwNPTE7m5uQ+dJTU1FY6Ojvjvf/+LnTt34ttvv4WJiQl69OiB8+fPP9S+9EN9Sl9++uknKJVKtGnTxrDdxYsXERISglWrVmHnzp147bXXsGnTJgwfPtywzbx58zBmzBgAKLO/qt4QZ2Zmonfv3ti9ezc+/PBDbN++HU899RTefPPNMnNz6ZW+7zZs2ID8/HyEhITg7t279z3H8+fPo3fv3jhz5gy++uorbN68GX5+fpg8eTKWLl0K4P+HkgIlwwb12R/mflyzZg0A4L333jN8/7Rp0wAA+/btQ58+fXDnzh388MMP2LZtGzp27IixY8dW+uZz2rRpsLW1xa+//or33nsPv/zyC6ZPn46hQ4eiQ4cO+OOPPzBp0iR8+umn+Prrrw3f9+uvv+Lll1+Gv78/tmzZgq1bt+L111+v9hxgoihCq9VCq9Xizp072LZtG9atW4dx48ZBqVQatluyZAmmTp2KNm3aYPPmzfjyyy9x6tQp9OrVCxcvXqz2/aaXn5+PAQMGYN++ffj444+xadMmuLq6YuzYsZVuX1xcjBEjRmDQoEHYtm0bXnjhBXz++ef4+OOPAZQUYXbu3AmgZMiz/vGorLhRXS+99BLeeustDB48GNu3b8eHH36InTt3onfv3rh9+7Zhu3fffRfvvvsuhgwZgm3btuHFF1/EtGnTcOHChTL7U6vV8Pf3x7p16zB79mxERUXhrbfewtq1azFixAiIogig5GfJ3NwcISEhhvP47rvvyuxr2rRpUCqV+OWXX7B06VLs378fzz//fJltFi9ejGeffRZ+fn7YtGkTfv75Z+Tm5qJfv35ISkoqs61Go8GIESMwcOBAbNu2zTD0tDJxcXHIysqq0AXWq1cvAMDEiROxdetWQ4HsSdi+fTu++uorLFy4EH/88QeaNm2KZ599Fn/88Ydhm/T0dHTv3h27du3C+++/j6ioKEydOhVLlizB9OnTK+zzq6++QkxMDD755BNERUWhX79+GDZsGNatW1ehm23NmjUwNTXFc889V2XGkJAQHD16FEuXLsWePXvw/fffo1OnTmXmoqzuY7J27VpMmTIFrVu3Rnh4ON577z18+OGHiImJeYx7Ebh69Srs7OyeWNfw+vXrERgYCBsbG6xbtw6bNm2Cg4MDgoKCyhTFJkyYgK1bt+L999/H7t27sXLlSjz11FMVniMBAQEQRRGRkZFPJB8REUlIJCKies3f3190cnISNRqN4bo5c+aIAMQLFy4YrluzZo0IQLx69aooiqKYkJAgAhC3bt1a5b6vXr0qAhDXrFlT4TYA4vz586v8Xq1WK2o0GrFly5bi66+/ft99ls9WXkZGhtisWTOxTZs2Yk5OTqXbCIIgFhcXiwcOHBABiCdPnjTc9sorr4hV/clr2rSpOGnSJMPXb7/9tghAjIuLK7PdSy+9JMpkMvH8+fNlzqNdu3aiVqs1bBcfHy8CEDdu3Fjp8fTGjRsnmpmZiSkpKWWuDw4OFi0sLMQ7d+4YrgMgvvLKK/fdX1XbHjlypMrH0NfXV+zUqZNYXFxc5vphw4aJ7u7uok6nE0Xx/x+fWbNmldlu1KhRIgDxs88+K3N9x44dxc6dOxu+fvXVV0U7O7tq5a/sfCq7BAcHi3l5eYbtcnJyRHNzczEkJKTM96ekpIhmZmbi+PHjDdf5+/uL/v7+FY41adIksWnTpoavv/32WxGAGBUVVWa7mTNnVrhPJ02aJAIQN23aVGbbkJAQ0cfHx/B1ZmbmA392qqJ/HI4cOSKKoiiePXtWBCC+/PLLZbaLi4sTAYjvvPOOKIqimJ2dLZqZmYljx44ts93hw4dFAGXuiyVLlohyudxwDL0//vhDBCBGRkYarrO0tCzzs1M+Z/lcS5cuFQGIaWlpoiiWPDYmJiYVnle5ubmim5ub+Mwzzxiu09+/q1evvt9dZPDxxx+LAMT09PQKty1cuFA0NTU1PJe8vb3FF198sczvDP0xSz8f9ObPn1/h9wkA0dzcvMzxtFqt6OvrK7Zo0cJw3cyZM0UrKyvx2rVrZb7/k08+EQGIZ86cEUXx/3+/NG/evMzvdlEUxe3bt4sAxN27d5c5loeHhxgWFma4bt++fSIAcd++faIoiuLt27dFAOIXX3xR2V0mimL1HxOdTid6eHiInTt3FgVBMGyXnJwsKpXKSu+38vz9/cU2bdqIxcXFYnFxsZiWlia+//77IgDxhx9+MGz3MH+Hyv8tyc/PFx0cHMThw4eX+T6dTid26NBB7N69u+E6Kysr8bXXXntgblEUxUaNGlX4eSIiovqHHWJERPXc1KlTcfv2bWzfvh0AoNVqsX79evTr1w8tW7as8vtatGgBe3t7vPXWW/jhhx8qdGM8LK1Wi8WLF8PPzw+mpqYwMTGBqakpLl68WGHI2sPIz8/H0KFDUVhYiKioKNjZ2Rluu3LlCsaPHw83NzcoFAoolUr4+/sDwCMfMyYmBn5+fujevXuZ6ydPngxRFCt0PwwdOrRMF55+Qu5r16498DiDBg1CkyZNKhxHrVY/VCfYo7h06RLOnTtn6CbRd2BptVqEhIQgLS2tQmffsGHDynzdunVrACX3QfnrS59/9+7dcefOHTz77LPYtm1bmc6l6njmmWdw5MgRHDlyBAcPHsRXX32FhIQEDBkyxDAc8fDhwygoKKgw/LBJkyYYOHBgheFR1XHgwAFYW1tjyJAhZa5/9tlnK91eJpOV6U4ESp4PD3ouPKp9+/YBQIVz7t69O1q3bm0459jYWBQVFeGZZ54ps13Pnj0rDAn8888/0bZtW3Ts2LHMcyIoKOihVywcMWJEma/L/2zs2rULWq0WEydOLHMslUoFf3//So8VFhZWrWOnpqZCJpPBycmpwm36SdtXr16NmTNnwsrKCj/88AO6dOmCjRs3Vvv8yhs0aBBcXV0NXysUCowdOxaXLl0yDGH9888/MWDAAHh4eJQ5Z/3Q9gMHDpTZ54gRI8p0QQIl82y5ubkZuj+BkvsyNTUVL7zwQpX5HBwc0Lx5cyxbtgyfffYZjh8/XqHLrLqPyfnz55Gamorx48eXGT7atGlT9O7du9r32ZkzZ6BUKqFUKuHu7o6FCxdi7ty5mDlzZrX3cT///PMPsrOzMWnSpDLnIwgChgwZgiNHjhg6Vbt37461a9di0aJFiI2NrTDsuzQXFxfcvHnziWQkIiLpsCBGRFTPjRkzBra2toY3R5GRkcjIyDBMpl8VW1tbHDhwAB07dsQ777yDNm3awMPDA/Pnz7/vG4GqvPHGG5g3bx5GjRqFHTt2IC4uDkeOHDGs4vYotFotxowZgwsXLiAyMrJM8SgvLw/9+vVDXFwcFi1ahP379+PIkSPYvHkzADzyMbOysiodTunh4WG4vTRHR8cyX+snvH7Q8R/2OE9aRkYGAODNN980vCHVX/SLNJQvXDk4OJT52tTUtMrrCwsLDV9PmDABq1evxrVr1xAWFgYXFxf06NEDe/bsqVZWZ2dndO3aFV27dkW/fv0wa9YsfPXVVzh06JBhaOf95oby8PB4pPszKyurTIFDr7LrAMDCwqLCJOBmZmZl7osnqbrnrP+3OueSkZGBU6dOVXhOWFtbQxTFhypmPuhnQ/8c7NatW4Xj/fbbbxWOZWFhUe0VYQsKCqBUKqscMu7q6oopU6bghx9+wKlTp3DgwAGYmpriX//6V7XPrzw3N7cqr9M/BhkZGdixY0eF89UPBS9/zpU9tiYmJpgwYQK2bNliGOq4du1auLu7IygoqMp8MpkMe/fuRVBQEJYuXYrOnTvD2dkZs2fPNgyTr+5joj+f+51zdTRv3hxHjhxBfHw8fv/9d3To0AFLliypdO61R6E/nzFjxlQ4n48//hiiKCI7OxtAybxpkyZNwsqVK9GrVy84ODhg4sSJSE9Pr7BflUr1yH9jiIio7uAqk0RE9Zy5uTmeffZZrFixAmlpaVi9ejWsra3x9NNPP/B727Vrh19//RWiKOLUqVNYu3YtFi5cCHNzc7z99tuGN/f6Lhy9yooL69evx8SJE7F48eIy19++fbtMV9fDmDFjBvbu3YvIyEh06NChzG0xMTFITU3F/v37DV1hAMrMhfMoHB0dkZaWVuF6/WTglXWc1OXjVEW//7lz55ZZha80Hx+fJ3a8KVOmYMqUKcjPz8fBgwcxf/58DBs2DBcuXEDTpk0fen/6bqOTJ08C+P/iS1X3aen7U6VSVTrHW/lihKOjI+Lj4ytsV9kbZCmUPufGjRuXua30Oeu30xcHSktPTy/TJebk5ARzc/MK8xKWvv1J0e9LP9/WgzzMghJOTk7QaDTIz8+HpaXlA7fv378/AgMDsXXrVty6dQsuLi5QqVQVfvcBFZ8nepU9L/TX6R8DJycntG/fHh999FGl+9AXxPWqOucpU6Zg2bJl+PXXXzF27Fhs374dr732WpUFQL2mTZti1apVAIALFy5g06ZN+OCDD6DRaPDDDz9U+zHRn8/9zrk69As8ACVFuAEDBqBNmzZ47bXXMGzYMFhZWT3U36Hy9Ofz9ddfV7nipr4o7OTkhC+++AJffPEFUlJSsH37drz99tu4deuWYe4/vezs7EoXXCAiovqFHWJEREZg6tSp0Ol0WLZsGSIjIzFu3DhYWFhU+/tlMhk6dOiAzz//HHZ2djh27BiAkjcKKpUKp06dKrP9tm3bKt2HvgNELyIi4pGHlbz33ntYs2aNYWLjyo4HoMIxf/zxxwrbVrdrCygZ9pSUlGS4D/R++uknyGSyCpN0P6pBgwYZinrlj2NhYVHlm7eHVdW5+/j4oGXLljh58qSh+6r8xdra+olkKM3S0hLBwcF49913odFocObMmUfaj35VPBcXFwAlk6Wbm5tj/fr1Zba7ceOGYXiqnpeXFy5cuFDmDXZWVhb++eefMt/r7++P3NxcREVFlbn+cbpXHua5+CADBw4EgArnfOTIEZw9e9Zwzj169ICZmRl+++23MtvFxsZWGM45bNgwXL58GY6OjpU+J0oXAczMzB7rPIKCgmBiYoLLly9X+Rx8VL6+vgBQYSXAjIyMCsMEAUCn0+HixYuwsLAwFPC9vLxw69atMoVEjUaDXbt2VXrMvXv3ltlWp9Pht99+Q/PmzQ0Fy2HDhiExMRHNmzev9HzLF8Sq0rp1a/To0QNr1qzBL7/8gqKiIkyZMqVa36vXqlUrvPfee2jXrp3h9111HxMfHx+4u7tj48aNhoUWgJLhsOV/jh6GfmGWjIwMw8IcD/N3qLw+ffrAzs4OSUlJVZ6PvtO1NE9PT7z66qsYPHhwhb8FWq0W169fh5+f3yOfJxER1Q3sECMiMgJdu3ZF+/bt8cUXX0AUxQcOlwRK5rL57rvvMGrUKDRr1gyiKGLz5s24c+cOBg8eDKCk6PT8889j9erVaN68OTp06ID4+Hj88ssvFfY3bNgwrF27Fr6+vmjfvj2OHj2KZcuWVehcqY7ff/8dH330EcaMGYNWrVohNjbWcJuZmRk6deqE3r17w97eHi+++CLmz58PpVKJDRs2GDqGSmvXrh0A4OOPP0ZwcDAUCgXat29f6Ruh119/HT/99BOGDh2KhQsXomnTpoiIiMB3332Hl156Ca1atXro86nM/PnzDfMJvf/++3BwcMCGDRsQERGBpUuXwtbW9okcp3nz5jA3N8eGDRvQunVrWFlZwcPDAx4eHvjxxx8RHByMoKAgTJ48GY0aNUJ2djbOnj2LY8eO4ffff38iGaZPnw5zc3P06dMH7u7uSE9Px5IlS2Bra4tu3bo98PszMjIMz4HCwkKcOHECixYtgp2dnaEIYGdnh3nz5uGdd97BxIkT8eyzzyIrKwsLFiyASqXC/PnzDfubMGECfvzxRzz//POYPn06srKysHTp0grD8SZNmoTPP/8czz//PBYtWoQWLVogKirKUBCRyx/+c0Vra2s0bdoU27Ztw6BBg+Dg4AAnJ6dH6jbx8fHBjBkz8PXXX0MulyM4OBjJycmYN28emjRpgtdffx1AyZDWN954A0uWLIG9vT1Gjx6NGzduYMGCBXB3dy9zHq+99hrCw8PRv39/vP7662jfvj0EQUBKSgp2796NOXPmoEePHgBKfq7279+PHTt2wN3dHdbW1g/VVejl5YWFCxfi3XffxZUrVzBkyBDY29sjIyMD8fHxsLS0vO9KkvcTEBAAoKTop+8mBICff/4ZP/74I8aPH49u3brB1tYWN27cwMqVK3HmzBm8//77ht8LY8eOxfvvv49x48bh3//+NwoLC/HVV19Bp9NVekwnJycMHDgQ8+bNg6WlJb777jucO3euTAF14cKF2LNnD3r37o3Zs2fDx8cHhYWFSE5ORmRkJH744Ydq/8584YUXMHPmTKSmpqJ3794PvO9PnTqFV199FU8//TRatmwJU1NTxMTE4NSpU3j77bcBVP8xkcvl+PDDDzFt2jSMHj0a06dPx507d/DBBx881JDJykycOBGfffYZPvnkE7zyyiuwsbGp9t+h8qysrPD1119j0qRJyM7OxpgxY+Di4oLMzEycPHkSmZmZ+P7773H37l0MGDAA48ePh6+vL6ytrXHkyBHs3LmzQgftqVOnoFarn9iHI0REJCEJJ/QnIqIn6MsvvxQBiH5+fpXeXn71rXPnzonPPvus2Lx5c9Hc3Fy0tbUVu3fvLq5du7bM9929e1ecNm2a6OrqKlpaWorDhw8Xk5OTK6zulZOTI06dOlV0cXERLSwsxL59+4p//fVXhRX9qrPKpH4Vt8oupVcv++eff8RevXqJFhYWorOzszht2jTx2LFjFfZfVFQkTps2TXR2dhZlMlmZY5VfZVIURfHatWvi+PHjRUdHR1GpVIo+Pj7ismXLDKsulj6PZcuWVbivy983VTl9+rQ4fPhw0dbWVjQ1NRU7dOhQ5Upqj7rKpCiK4saNG0VfX19RqVRWyHby5EnxmWeeEV1cXESlUim6ubmJAwcOLLPKW/nVDfX0j1NmZmaZ6ydNmiRaWloavl63bp04YMAA0dXVVTQ1NRU9PDzEZ555Rjx16lS1zqf0RalUis2aNROnTJkiXrp0qcL2K1euFNu3by+ampqKtra24siRIw0r95W2bt06sXXr1qJKpRL9/PzE3377rdJVBVNSUsTQ0FDRyspKtLa2FsPCwsTIyEgRgLht27Yqz7n8fVRadHS02KlTJ9HMzEwEUOlKjZWp7HHQ6XTixx9/LLZq1UpUKpWik5OT+Pzzz4vXr18v872CIIiLFi0SGzduLJqamort27cX//zzT7FDhw7i6NGjy2ybl5cnvvfee6KPj4/hfmzXrp34+uuvl1lF8cSJE2KfPn1ECwuLMqtVVvV8Kb/qod7WrVvFAQMGiDY2NqKZmZnYtGlTccyYMWJ0dLRhm6ru3/vp169fhVVHk5KSxDlz5ohdu3YVnZ2dRRMTE9He3l709/cXf/755wr7iIyMFDt27Ciam5uLzZo1E7/55psqV5l85ZVXxO+++05s3ry5qFQqRV9fX3HDhg0V9pmZmSnOnj1b9Pb2FpVKpejg4CB26dJFfPfddw0rp97v94ve3bt3RXNzcxGAuGLFigq3l7+/MzIyxMmTJ4u+vr6ipaWlaGVlJbZv3178/PPPy6yUK4rVe0xEseTnrWXLlqKpqanYqlUrcfXq1VWuzlmefpXJykRERIgAxAULFhjOtTp/h6pasfjAgQPi0KFDRQcHB1GpVIqNGjUShw4dKv7++++iKIpiYWGh+OKLL4rt27cXbWxsRHNzc9HHx0ecP3++mJ+fX2Zf8+bNE52cnMTCwsIHniMREdVtMlEs1edMRERERPe1ePFivPfee0hJSXmkDsi64urVq/D19cX8+fPxzjvvSB3niQsPD8fYsWNx7do1NGrUqEaPJZPJ8Morr+Cbb76p0eOQtHQ6HVq0aIHx48dXOQ8cERHVHxwySURERFQFfYHD19cXxcXFiImJwVdffYXnn3++XhXDTp48iY0bN6J3796wsbHB+fPnDcNEqzPEuj4KDQ1Ft27dsGTJEhaq6IlYv3498vLy8O9//1vqKERE9ASwIEZERERUBQsLC3z++edITk5GUVERPD098dZbb+G9996TOtpDsbS0REJCAlatWoU7d+7A1tYWAQEB+Oijjwyr7BkbmUyGFStWYPv27RAE4ZHmfCMqTRAEbNiw4ZFXTiYiorqFQyaJiIiIiIiIiKhB4UdlRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgsCBGREREREREREQNCgtiRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgsCBGREREREREREQNCgtiRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgsCBGREREREREREQNCgtiRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgsCBGREREREREREQNCgtiRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgsCBGREREREREREQNCgtiRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgsCBGREREREREREQNCgtiRERERERERETUoLAgRkREREREREREDQoLYkRERERERERE1KCwIEZERERERERERA0KC2JERERERERERNSgmEgdgGqOThRxt0hAsSBCK4rQiYBCBpjIZFDKZbA1k0Mhk0kdk4iIiIiIiIioVrEgZiR0oojbBTqkF2iRodYiNb8YmYU66MSqv0chA5xVCnhYKuFqYQI3cxM4mStYJCMiIiIiIiIioyYTRfE+JROq69Lyi3H0diHO5hQZil9yAMJD7KP09goZ0NreDF2cVXC3UD7ZsEREREREREREdQALYvVQsSDibE4REjILcKtABxmAJ/kg6vfnaq5AF2dztLY3g1LOrjEiIiIiIiIiMg4siNUjxYKIw+lqJGQWQiOIT7wQVp5+/6ZyGbo6q9DLzYKFMSIiIiIiIiKq91gQqydu5hdjR3Iu7mqEGi2CVUUGwNZUjuFe1mhkyaGURERERERERFR/sSBWxxULIv5KUyP+VkGNd4Q9iP743V3M0c+d3WJEREREREREVD+xIFaHSd0Vdj927BYjIiIiIiIionqKBbE66lxOEbYl5wKQtiusKvresJFe1vC1N5M0CxERERERERHRw2BBrA46mVWIqJQ8qWNUW7CnFTo4qqSOQURERERERERULXKpA1BZ9a0YBgBRKXk4mVUodQwiIiIiIiIiomphQawOOZdTVO+KYXpRKXk4l1MkdQwiIiIiIiIiogdiQayOuJlfbJgzrL7alpyLm/nFUscgIiIiIiIiIrovFsTqgGJBxI56XgzT25Gci2KB09IRERERERERUd3Fglgd8FeaGnc1Qp1cTfJhiADuaAQcSlNLHYWIiIiIiIiIqEosiEnsZn4x4m8V1PtiWGlxtwo4dJKIiIiIiIiI6iwWxCSkHyopkzrIEyYDh04SERERERERUd3FgpiEDqcbx1DJ8vRDJw+nc+gkEREREREREdU9LIhJpFgQkZBZaHTFsNKOZhayS4yIiIiIiIiI6hwWxCRyNqcIGiMvFhUJIs7lFEkdg4iIiIiIiIioDBbEJJKQWWB0c4eVJ0PJeRIRERERERER1SUsiEkgLb8Ytwp0Rj1cEiiZSyyjQIc0rjhJRERERERERHWIidQBGqKjtwshA4y+IAaUVFyP3S7EUEul1FGIiIiIapROFHG3SECxIEIritCJgEIGmMhkUMplsDWTQyEz9jECRERE9QMLYrVMJ4o4m1PUIIphACAASMopQrCnFeR8AUhERERGQieKuF2gQ3qBFhlqLVLzi5FZqIPuPi/yFDLAWaWAh6USrhYmcDM3gZO5gkUyIiIiCbAgVstuF9z/hZIx0onA7UIdXMz5dCMiIqL6LS2/GEdvF+JsTpHhNZ0cJR8CPohOBNILdLhVoDNsr5ABre3N0MVZBXcLdtQTERHVFlYoall6gVbqCJJIV2tZECMiIqJ6qVgo6fBPyCzArQJdhakvqlMMK6309joROJNdhMTsIriaK9DF2Ryt7c2glLNrjIiIqCbJRFFsYP1K0tp9PQ8nbhc+1Aun5dNH4urRf9B5+Fg8veCbGstWU+QAOjqpENjESuooRERERNVWLIg4nK5GQmYhNIJY43PA6vdvKpehq7MKvdwsWBgjIiKqIVxlspal5hdXqxi25aM38dFTfhCEh/3Mse4RUHLeRERERPXFzfxirDqbg8MZBdAIJWWwmv4UWb9/jSDicEYBVp3NwU2+hiIiIqoRHMNWi3SiiFuFugduJ4oizh3cBd/+gZDLjaNmmVmogyCKnFifiIiI6rRiQcRfaWrE3yqQdFVwEcBdjYCfL9xFdxdz9HNntxgREdGTxIJYLbpbJECoxquqG2eO415mOvwCQspcL4oi9q38DIc3rUZxUSF8+w7GqHeWwcyyZCiioNPh0IYfcHTbL8i6kQwTMzM0adsFg6bPgVenngCAKwl/Y8WMUQCA0Hmf4difm3Aj6QQ8fNrhmQ+/Rcblc4j84gPkZWfCp/cgjH7vM6isrEv2Lwg4/OsKHNmyHlnXr8LETIUWPfoj+F/z4dCo6X3PSScCd4oEOKgUD3mvEREREdWOm/nF2JGci7uakg59qecV0R8//lYBLtwpwnAvazSy5MT7RERETwILYrWouDrVMABJ+yJham6BFj36l7k+MXoH5AoFLOwckXs7Ayei/oCde2MEvfouAGDLR3OQsHUDAMCxiTfU9+7gUux+XEk4hKnf/4FmXfqU2d/2j+fCzr0xREFAyqkjWPPqWNzNSIW9hyc0+Xk4tXsr7Bt5Ysisef/b/m3E/b4GAODa3Be5WbeQGL0D107EYfav+2Hl4PxQ519cXIyTJ09Cq9WiZ8+e1bpviIiIiGrCuZwibEvOBSB9IawydzUC1l+4i5Fe1vC1N5M6DhERUb1nHOPx6gltNdcvSDqwEy17DYDSTFXmerlCgdfD/8Gb2+LRyK8jAOBy/F8AgOwbyTi67RcAQO9nZ+DNbfH4z/YE2Lk3gaDVIvr7jyscp9PQpzFnSyz6T3wFAJB1/SoGTnsDb2z+Bx2CxwAArhz5u2T/N68h/o+1AICnF36D137/C//58yhsXT2Qe/sW/vl15QPPS/e/81er1di/fz8+++wzRERE4ODBg9W6X4iIiIhqwsmsQmxNzoWIulkMA2DItjU5FyezCqWOQ0REVO+xQ6wW6arxCut2yhXcunIe/pNnV7itebd+sHVxBwA4N22Bm0knkJedCQC4kXQC+gVDOwaHAQBU1jbw6fsU4n5fgxtJJyvsz7d/EADA3qNJhev0QyD1+79Zav+/v/8qfn//1TL7un766APPLeXGTRxOPIqkpKQyiwWYmPBpSERERNI4mVWIqJQ8qWM8FH3eDo6qB2xJREREVWElohYpqjEPatL+KMhNTODbb3CF21TWNob/y01K5uISK+s6q+bE9SrLkrnB5Ir/fxro5wuT/W8f+v2XPo67T1uYKMu26tu5N37g8Xbv3AnxTkaF63Nzc/Hhhx9CLpcbLgqFoszFxMQESqXS8K+pqanhX1NTU5iZmRkuKpUKKpUKZmZmsLCwgEqlYtGNiIiIKjiXU1TvimF6USl5MJPLOHySiIjoEbFKUItMqlGoOrs/Cl4de8LC1v6h9t2odQfIZDKIoogTkX+gSZtOKMy9h/OHogEAjf06PFJmvcZ+HQ377zJ8HPqMnwmgpFB27UQczP5XXLufls2b4eqpbBQXl10+3MTEBM7OztBqtdDpdIZ/i4uLUVhYCEEQIIqi4d/HIZPJDJeqCnAmJiYVCnD64puZmVmVBTiVSgULCwuYmpoazeqgRERExupmfrFhzrD6altyLqxN5Zxon4iI6BGwIFaLHrRUdl7ObVw7dQRD53z40Pt2bOKNLiPHI2HrBvyzcTnOH9oD9b07KLibA7mJCZ568a1HjQ0AcGjshW6jJyB+80/485P38PfGFTAzt0RO+nUU5eVizAdfwb1Vm/vuI+ipQbAZMhBHjhzBgQMHoNFoIIoi3NzcMHXq1IfOpNFoUFBQgMLCQhQUFKCoqAiFhYUoKioyXDQaDYqLiw3/6i9ardZQeNNf9F+XLr49qQJc6eJb6QKcvvhWughXuvOtfPHNzMwM5ubmhn/Nzc2hVPJFMBER0cMoFkTsqOfFML0dybmY2tr+ga8ziYiIqCwWxGqRrZkcchlQ1WKT5w7sgigI8PMPfqT9j373Uzg3bYGj2zci60YyTExN0aKHPwbNeBNenR5/FceR7yyDs3dLHN22EbdTLkNtagp7d0+06NEfzbr2ue/3KmSAnZkccpkMvXr1QseOHfHXX38hLi4OlpaWj5RHXzCytbV9pO9/GIIgoLCw0FB80xfeShfgNBoNioqKyhTe9JfSBTf9/zUaDQRBKFN8e9wCnFwuNxThFArFQw0/1Xe/mZqaGoac6gtvKpXK8C+734iIqL77K02Nuxqhzk6gX10igDsaAYfS1BjQ6NFeTxERETVUMvFx34HTQ1l7LgfpBbpKb/vp9Qm4k34Dszfuq+VUNc/NXIHJvhWHgebl5UEmkz1yUcxYabVaqNXqMkU4jUZjKMDpi2+lO+C0Wm2F7jf9v/rCW/kC3OOobPhpZcW30gW48nO/6Tvg9AU4/dBTffebiYkJC3D1kCiKhnkIiYjqmpv5xfj5wl2pYzxxE1rZcugkERHRQ2CHWC3zsFTiVoEOQiW3Ne3QHT3GTKr1TDVNjpLzroyVlVXthqknTExMYGNjAxsbmwdv/JgEQSgz/LT0ENTS3W+lL/rCm/7f0sW3mup+0xfe9P+W74CrbOhpVfO/lS7A6TvfLCwsWHx7TN27d8esWbMwYcIEvPHGG+jVqxeefvppAMAnn3yCffv2ISwsDF5eXmjXrh2cnJweWDgTBAHZ2SVzD1pbW/N3BhE9Fv1QSRlQ77vDSpOBQyeJiIgeFgtitczVwqTSYhgA+E+eVatZaosAwM2CT7W6Si6XGzqzaoNWqy0z9FR/KT/0tPz8b/rON/0QVP2ldPGtJrvfyhffqhp+WrrzrXQBrvTF3NzcKBdfyMnJMTyPFi1aZCh2HTlyBCdPnsSzzz6L559/HoMGDcLHH38MZ2dnw/dW1VWWlpaG+fPnY+PGjfD09MS2bdvQqlWrMtsLggC5XI4VK1Zgy5YtMDU1hUwmw+uvv47+/fsDAGJjY3HgwAEoFAqYmppi8ODBaN26dU3fJURUxxxON46hkuXph04eTlejvwe77omIiKqDVYpa5mbeMO9yFsRIz8TEBFZWVrXS6SMIArRaLQoKCqBWqw3zvpUvwJXufCtfgCu/+EJxcXGNdL9VtfhC6eJb+eGn5ed/0xffTE1NDZ1v+u43E5Oa/xksLi6Gubk5AGDq1KmYMmUKHBwcMGfOHFy7dg1yuRy3bt1CXFwclixZgtatW2PSpElo2bJllZ1iVlZWWLBgAcaNG4cff/yxzH2mpy8sDhgwAG3atIFGo0F6ejo++ugjODk5wc/Pz/C43blzB7m5ufjnn3/w0UcfoXnz5jV4jxBRXVIsiEjILDS6YlhpRzML0cvNgl1iRERE1cAqRS1zMldAIQN0xvxqrByFDHBSKaSOQQ2QXC6XZPGFgoKCMosvlF6Aobi4uEwHXGUrn2q1WkMxr6ioyFB80//7OB7U/Va6CFfZ0FP9pXfv3lAqlWUKUwUFBYb5AM+cOYOsrCwMHDgQ/fv3x7Fjx9C/f3/4+PjAzMwMnp6esLCwgJmZGdLS0nD06FEMGDCgwnyCtra2sLW1RVJSEjQaDczMzKo8txYtWqBFixaGrydPnozs7GwAQL9+/dCvXz/DbXZ2dhg7diwLYkQNyNmcImiqWtnISBQJIs7lFKGdY+10fRMREdVnLIjVMoVMhtb2ZjiTXWTUn1DqyQH42ZtBzgm2qQGQy+WwsLCAhYVFrRxPv9BC+eGn+mGnlXXAle9+K7/6qU6nK1N8q6oA1717d5iamlbIoy9oKRQKWFpawsTEBN7e3sjNzcWkSZNgYmICURTx6quvGopR58+fx6VLl9C3b98qz1WnK1mMpPwx9fRDKFevXo3Nmzfj2rVrePfdd9GxY0fDNvHx8Th06BDS09MREBCANm3aVPu+JqL6LyGzwOjmDitPhpLzZEGMiIjowVgQk0AXJxUSs4ukjlErBACdnfmijKgm6Lu1amvxhaKiIkPxrbI554qLiw0FMY1GYxg+mZubC41Gg3v37sHBwQHFxcXIy8szFNx8fHzg4+Nz3+NrNBoAVRfE9J1qgwcPRqtWrRATE4Pr169X2ObevXs4fvw4OnfuDE9Pz0qPk5CQADMzswrzv+lXPzW2ud+IGoK0/GLcqmKVb2MiAsgo0CEtvxjuXHGSiIjovlgQk4C7pRIu5gpkFuiM/lNKF3MF3C34goyovpPL5YaCUFV0Op2hICaKomFbQRAMxSUAKCwsROPGjQ1DN6tDJpNBoVDc9/gA0KRJEzRp0gR9+/ZF+/btcerUKfTu3RsA0K1bN3Tr1g0A0KNHDxw+fBgDBgwwfK8oiigoKMCePXuqnan88FP96qfl534rvfpp+fnfSl/Mzc0N/+rng2MBjujxHb1daPTdYXpyAMduF2IoC2JERET3xYKYRLo6myMyJU/qGDVKRMl5ElHDUFRUZCh63bp1CwpFydyB2dnZuHv3LpTKkjdnISEhePPNN9G4cWO8+eabuH37Ns6fP48hQ4ZUKP5otVqkpaXhxo0bhuGglQ1JFUUReXl5sLa2BlBSnEtOTjYU0LRabZmFBeRyOdLS0iqsbmlpaYmJEyca5nwrPQS1/NBT/UU/3FQ/5FQQBBQUFNTK4gul534rv/hCZXO/lS6+le9+U6lUtbL4AlFt04kizuY0jKkqgJLu/KScIgR7WnHKCiIiovvgK1+JtLY3Q/SNfKOe3NVUDvjaVz0BNhEZl4KCAsOk9ydPnoSzszMA4MUXX0RBQYGhILZs2TLs3LkT+fn5hmGMFy9eRHBwcIV9ZmRkIDg4GLm5uSgsLES7du3wn//8B7NmzcLp06fx7rvvYvPmzVAoFBg7dqxh2GZxcTFmzZqFtm3bAgA++OADmJiYwMbGBmq1GiqVCgEBAWWKYTKZzDDnWU3SarVl5nwrKCgos/hC6XnfHrT4gn7l08LCQkkWX6iqAFd65dPyBTh9pyG736i23C7QNajFjICSxZtuF+rg0kBXNyciIqoOmfi4r5rpkR1MzcfhjAKj/MRSFEXoLiRAfuU4HB0doVKpoFQqDW+eunXrhiZNmkgdk4jqMVEUce/ePcMKoufPn8e9e/egVqshiiJ69eplKNBt2LABV65cQVFREXQ6HaZNm9ZgVpjUaDSGud/Kr35aevGF4uJiQxFOq9VWKMDpL4IgGP6tye630gW40sU3fQFOP+y0su638sNPLSws2P3WgJ3MKkSUkXflVybE0wrtObk+ERFRlVgQk1CxIGLV2Rzc1QhGVRSTAbBRynA3cjWKCtSVbhMcHIzu3bvXbjAiIqpRgiBUWPlU3/lWuvhWVFRk6HorX4ArXXzTF96e5PDT0t1v+rnpqhp+qv8gp3QBrrLut9Lzvun/Zfdb3bH7eh5O3C6EIHGO5dNH4urRf9B5+Fg8veCbGj2WHEBHJxUCm1jV6HGIiIjqM35cKiGlXIbhXtb4+cJdqaM8USKAEd42sH35JXz99deG1eH0LCws0KlTJ2nCERFRjZHL5bCwsKh0nreaoNVqoVaryww/1Wg0hgJc6fnfKiu+le+A02q1lRbgHkf54aeVFeBKd76ZmJhU2v1mamoKlUplGH5augCnVCqrvUCFMcrIyIAgCHB3d6/09iX/noWEPRGYuzvxiRUqqypu5aSmYOmwLgCA6cu3olnXPobbXJr5QFtUBIfGNTssGyiZRyw1v7jGj0NERFSfsSAmsUaWSnR3MceRW8YzdLKHizkaWSoBKDF69Gj89ttvZW4vKirC0aNH0bNnT2kCEhGRUdDPC2djY1PjxxIE4YHDTyub/61891vpfzUaTY0sviCXy6sswN1v7rfSK59WVYCzsLCoc91vO3bswM2bN+Hn54dBgwbBwcHBcJtWEHAsZid8+wdKnnvU3KW1erzMQh0EUeTE+kRERFXgkMk6wFiGTsoA2JnJMdXXHiby/3/xtX37dpw4cQKiKMLc3Nzw5sDCwgIhISFo06aNdKGJiIjqIP3iC6WHn1Y29LR091tlBbgHDT99HJUtvlC6AGdiYlJm+Gllq5+WHoJa2cqn1Vl84ZtvvkFWVpahS65bt27o378/LC0tseevwwjs3xsTv9iA1v0DkXIqAbu/XYzUC4nQqPNhae+IRr7tMXTOh3BsUtK5lXL6KPYuX4aUk0eg1RTBpVkrBLzwGto9NQIAMLezc6U5xnzwFf74YHaF67279MaMFdsqdJWV7iYb88FXOB29A1cSDsHKwRkDpr2ObqOeN+zjSsLf2L50LrJSrqCRXwcETPkX1v3rOcP3dhnxLIrUeYj6YgHO/bUbedm3YWpugTa+Pnj15ZcwadKkh3x0iYiIjB87xOoA/dDJ9UYwdHJYU+syxTAAGDJkCK5evYo7d+5gxIgRaNWqFaKjoxEXF4c//vgD0dHRGD16NDw9PSVKTUREVLeYmJjAysoKVlY1PweUIAiG4af6VU/Lz/9WvvOtdAGussUXiouLa6T7rbKVT9XqkvlK9fuPj4/HkSNH4O7ujn3/xMLU3AItevSHIAhY99pzUN/JhpWjM1yatcK9W+k4e3AX+j7/EhybeCP5eCxWzgyFTlsMaycXWDu5IPXcafzyn6l4euE36DxsLJq07YJbV8+jKD8PlnaOcGjsBQCQmyjh7tMWaecTAQAu3q1gZmkNl2Y+Dzy3LYvmwMbFHXITE+SkpmDLojlo2qEHXLxbIvd2Btb9azw0BWooVeZQ38nBxrenV9jHnu8/Rtwfa2FiagbX5j4oyL2H40cTsG/fPhbEiIiIKsGCWB3RyFKJkV7W2JqcK3WURzbS2/p/QyXLMjU1xbPPPovz58/Dx8cHMpkMgYGBCAgIwI4dO3DmzBmsWbMGbm5uCAsLg5OTkwTpiYiIGia5XG7o2LKzs6vx4+kXX1Cr1SgqKqpQhNMvulC6A05/KV1808/5VlmhTRRFpKamInpnFFr2GgClmQr5d7KhvpMNAHh53U7Ye5R8EJdx+Rws7R0BAHu+/y902mK06BmAyV9thMLEBH9+8h7+/uVH7P52MToPG4uXf9pp6Pby6fdUmTnEvDp2N3R9jZy7tMwcYvfT2j8I45euRvrFJHw1LgCiIODq0b/h4t0ShzethqZADZlcjpfWRsG9VRvs/m4J9q38rMw+slKuAAD8J8/GUy/+BwAw3EkHbXb6wzw8REREDQYLYnWIr70ZggWxXi4NHuxpBV87sypvd3FxgYuLS5nrTE1NERYWhqCgIGzevBlXr17Ft99+C29vb4SGhtbKp+JERERUu5704gtLliyBRqOBTCaDKIqws7NDnz59YGlpiQ8++AABL4cAACztHODZvhtSTh3BZ6G94ejZDK7NfeHbdzA6BIcBAK4nHgcAXIrdj/e6l52k/25GKu7eSoOtS+WT9z+OjiFPQyaTlekmy83KBADcunweAODs1RLurUqmmWg/eGSFgljr/kE499du7F2+DEe3b4SzVwvcGtgP/5n18hPPS0REZAxYEKtjOjiqAKBeFcWCPa0MuR+FlZUVJk6ciMzMTENh7LPPPkObNm0wfPhwmJqaPsG0REREZEwEQQAAuLu7o2/fvvDx8YFcLscnn3wCExMT+PYbbNh22g/hOLEzHNdOxOPWlQtIjN6OU7u2IPd2BvpPetWwnY2LO2xdPCoeS6utkXMwt7YFAChMSr00L9f5Vnol0cq64rqHTYSzVwucPbgL6ReTcPPcKXweux+7t21GYmJijeQmIiKqz1gQq4M6OKpgJpdh2/+GT9bFifb1L8lGelvftzPsYTg7O2PmzJm4du0atm7disTERCQlJaFHjx546qmnJF8dioiIiOqe0aNHw8rKqsJcpNu2bUOP3n1hYWsPoKSIdO3kEXQZ/qxhwvrwBf9CwrZfcPXYYfSf9Coat+mIq0f/gb17Y0z9PhxKlTmAku6wm2dPwt6jCQAYrtcUqMscU399yW35T+T8XFv44sy+CGQmX8StKxfg0qwVTkdvr7Dd9cRjcGnuC+8uvQEAV48dxvJpI3DmzBlkZWXB0dHxieQhIiIyFiyI1VG+9mawNpVjR3JunVx90tZUjuFelc8Z9riaNm2Kf/3rXzhz5gwiIyNx+PBhJCQkYMCAAejVq9cTPx4RERHVX35+fhWuy8zMxD///INFSz81XCfodFj1UhjMLK1g69oIMrkct66UDEd0a1myj8EvvoWVL4Xh2skjWBzYFvaNPJGfk4XczHR4de4Fv4BgACXDFy/8vRdnYiLw9fiBsLR3wgvfboKlvRMs7BygvpONTfNegaNnM3QKGYPe4ypOgl9dPZ+egkPrv4emQI1vJwyGrWsj3Em/WWG7fzauwKk9W2Hr4gFzGztk3bgKAGjUqBEcHBwe+fhERETGii03dVgjSyWmtrZHN5eSTxtlD9i+pumP38PFHFNb29dIMay0Nm3a4N///jcCAwMBALt378ayZctw5syZGj0uERER1W87duyAIAgYGzYK+sWv5QoFeoyZDHuPprh3Kw1Z16/C3sMT/Sa8gkEz3gQAeHfpjRkrtqNVn0GATIZbVy5AYaJEm0HD0G/CK4b995/4Clr08IdSZY7Uc6dx8+xJACXDGkPf+wyOTbxRlJ+LG4nHcCftxmOdi7WTKyZ9+Qtcm/tCp9VCZW2L0Pc/N9yuNCuZtsKn32B4d+oFraYQGZfOQmmqwtBhwxAZGVlmuCURERGVkImPuwY21Yqb+cWSd4vZ1WBX2IMIgoDo6GjExcVBEATY2dlh9OjRFYZHEBEREY0cORIpKSk4fvw41p7LQXqBTupIj+V2ymU4eTY3fL1v5WfY/d0SAMAbmw/D2atFhe9xM1dgsq99rWUkIiKqb1gQq0eKBRGH09U4mlmIIkGEDDU7v5h+/2ZyGbo4q9DLzQJKubSfMGo0GuzYsQNnzpyBKIpwc3NDWFgYnJycJM1FREREdcfSpUvRrl07BAcHY/f1PJy4XQhB6lCP4atxAdAVF8PRsxnuZabjZtIJAECnoc/gmQ+/rbC9HEBHJxUCm3DFbiIioqqwIFYPFQsizuYU4WhmATIKdE+8MCYHIABwNVegq7M5fO3NJC+ElZeXl2dYkRIAvL29ERoaCisrvvAjIiKi/3cyq7Berd5dmZ1ff4jTe7bjXmY6ZDIZnDybodOwseg9bnrZlSlLCfG0QvvHWAWciIjI2LEgVs+l5Rfj2O1CJOUUQfe/R1Jf0Kqu0tsrZICfvRk6O6vgblH7QyMf1u3btxEeHo709JIXiG3atMHw4cNhamoqdTQiIiKqAzLUWqw5f0fqGLXuBV87uJhz/SwiIqKqsCBmJARRxO1CHdLVWqSrtUjNL0Zmoc5QJKuMQgY4qxTwsFTCzcIEbhYmcFIpIK+HE69eu3YNW7duxZ07dyCXy9G9e3cMHjwYcjnXjSAiImrIdKKIz05m3fc1kbFRyIA5HRzr5Ws6IiKi2sKCmBETRBF3igSs3/grtIKAMWPHwUQGKGQyKOUy2JnJje6F0pkzZxAZGQm1Wg2lUokBAwagV69eUsciIiIiCf15LRdnsoskW5ioNskBtHEww9Cm1lJHISIiqtPYR23E5DIZzHSFyEm5BABwMdFBpTLuuSTatGmDNm3a4PDhw9i3bx92796NQ4cOISQkBG3atJE6HhEREUmgi5MKidlFUseoFQKAzs7G/XqPiIjoSWCHmJGLiopCfHw8AGDQoEHo27evxIlqjyAIiI6ORlxcHARBgJ2dHUaPHg1PT0+poxEREdETptFokJWVBVNTUyiVSsO/CoUCt2/fxsbkAuQrzKWOWaNkAFzMFZjiay91FCIiojqPBTEjlpOTg2+++QaCUDJlvrm5Od544w2YVLEakbHSaDTYsWMHzpw5A1EU4ebmhrCwMDg5OUkdjYiIiJ6QHTt24NixY1XebtGiA3R+xv/B4FBPK7Tj6pJEREQPxBnHjVhMTAxK1zsLCgpw8uRJCRNJw9TUFGFhYXjjjTfg7e2N9PR0fPvtt/jpp5+Ql1e/l2EnIiKiEi1atKjytiZNmuDVp4fCVG5cc6eWZyaXwdfeTOoYRERE9QILYkYqLS0NiYmJKN8AeOjQIUPHWENjZWWFiRMn4pVXXoGbmxuuXr2Kzz77DOHh4dBoNFLHIyIiosfg4uIChUJR4frWrVtjypQpMDdVoquzCsZcEuvirILSyIt+RERET0rDGjvXgJw7d67S6+/cuYPU1FQ0bty4lhPVHU5OTpg5cyZSUlKwZcsWJCYmIikpCd27d8fgwYMhl7NOTEREVF8kJydj586dyMjIKHO9TCaDi4sLRo8eDdn/VtXu5WaBpJwi3NUIRrXipAyAnZkcvd0spI5CRERUb3AOMSOl0+mQkZEBnU6HNWvWwNHREYMGDYJMJkOLFi0q/QS1oTpz5gwiIyOhVquhVCoxYMAA9OrVS+pYREREdB8JCQk4ePAgcnNzAQCenp4YPHgwfv75Z2g0Gpibm2PmzJmwtbUt830384vx84W7UkSuURNa2aKRpVLqGERERPUGO8SMlEKhgIeHh+FrKysr+Pr6Spio7mrTpg3atGmDw4cPY9++fdi9ezcOHTqEkJAQtGnTRup4RERE9D9arRZ79+7FsWPHoNFoIJfL0bZtWwQHB8PCoqQ7qnv37vjnn38wbty4CsUwAGhkqUR3F3McuVVgNF1iPVzMWQwjIiJ6SOwQawAWLFiAFi1a4LnnnpM6Sp0nCAKio6MRFxcHQRBgZ2eHUaNGoWnTplJHIyIiarDu3buHqKgoXLhwAYIgQKVSoXv37vD3968w1YEgCMjLy4ONjU2V+ysWRKw6m1Pvh07KIMLOTIGpvvYw4dxhRERED4UdYg2EiQkf6uqQy+UIDAxEQEAA/vzzTyQmJmLt2rVwc3NDaGgonJ2dpY5IRETUYNy4cQNRUVFITU0FANjZ2WHgwIFo165dld8jl8vvWwwDAKVchuFe1lhfn4dOiiIEUYT22F5cM+uMJk2awNTUVOpURERE9QY7xIycIAj48MMP0a5dO4SGhkodp97Jy8vD5s2bcfXqVQCAt7c3QkNDYWVlJXEyIiIi43Xq1CnExMTg7t2SgpWHhwdCQkLQqFGjJ3qcczlF2Jqc+0T3WZssLhxGzrljhq9dXV3RtGlTeHp6wtvb2zCMlIiIiCpiQczIaTQaLFmyBJ07d8bw4cOljlNv3b59G+Hh4UhPT4dMJkObNm0wfPhwfhJLRET0hAiCgP379yM+Ph5FRUWQy+Vo1aoVQkJCYG1tXWPHPZlViKiUvBrbf00J9rRCKwsRy5YtQ+mX83K5HIIgoEmTJnjhhRckTEhERFS3cRydkSssLATAIZOPy8nJCTNnzkRKSgq2bNmCxMREJCUloXv37hg8eHCF+UuIiIioetRqNaKiopCUlARBEGBqaopevXph4MCBtfL6pYOjCgDqVVEs2NPKkLtr1644cuSI4TZBEAAAvXv3liQbERFRfcEqiZHTaDQAwE6mJ8TT0xP/+te/kJSUhIiICMTGxuLo0aMICAjgC08iIqKHkJGRgYiICFy/fh0AYG1tDX9/f3Tp0qXWs3RwVMFMLsO2/w2frIvDJ/RT5o/0toavnZnh+h49epQpiAFA48aNubo4ERHRA3DIpJG7efMmVq5ciQEDBqB///5SxzE6sbGxiImJQXFxMSwsLBAcHIy2bdtKHYuIiKjOOnv2LKKjo5GdnQ2gZN6rIUOGwMvLS9pgAG7mF2NHcm6dXH3SzlSO4V7WaGSprHDbxo0bcfHiRYiiCKVSieLiYjRp0gSTJ09mFzsREVEVWBAzcleuXMHPP/+MoKAg9OzZU+o4RkkQBERHRyMuLg6CIMDOzg4jR46sEy/siYiI6gJBEPD333/j8OHDKCgogEwmQ/PmzTF06FDY2dlJHa+MYkHEX2lqxN8qgAzSdovpj9/DxRx93S2glMsq3S45ORnr1q2Dm5sbJk+ejD/++AOXLl2ClZUVpk+f/sBVN4mIiBoiFsSM3Llz5/Dbb79h2LBhkgxBaEg0Gg3+/PNPJCYmQhRFuLm5ITQ0FM7OzlJHIyIikkRhYSF27dqF06dPQ6fTwcTEBB07dsTgwYPr/HQOdaFb7H5dYaWJoojTp0+jWbNmhpWw9+3bh4MHD0KhUOD555/nB3VERETlsCBm5E6ePImtW7ciNDQU7dq1kzpOg5CXl4ctW7bgypUrAABvb2+EhoYaXqASEREZu6ysLERERCA5ORmiKMLS0hJ9+/ZF9+7d69UQvmJBxOF0NY7cUqNYlNV4x5h+/2ZyGbo4q9DLrequsOo4d+4cfv/9dwiCwNECRERE5bAgZuSOHDmCyMhIjBs3Dj4+PlLHaVBu376N8PBwpKenQyaTwc/PDyNGjKjzn4gTERE9qkuXLmH37t3IzMwEULJKc2BgIFq2bClxskcniiJ+WL4C+TaucOzUHxkFuideGJMDEAC4mivQ1dkcvvZmj1UIKy0rKwsrV65EYWEh2rZti7CwsCeyXyIiovqOBTEj988//2DPnj2YNGkSW+UlkpKSgq1btyInJwdyuRzdunVDYGBgvfqEnIiIqCqCICA+Ph6HDh1Cfn4+AMDLywshISH1ftoAnU6HTZs24cKFC3Bzc8PMmTORll+MY7cLkZRTBN3/XkXrC1rVVXp7hQzwszdDZ2cV3C3uPzTyUWk0GqxatQq3bt2Ci4sLpk6dyg/oiIiowWNBzMjt378fBw4cwIwZM+Du7i51nAYtKSkJERERUKvVUCqVCAgIQO/evaWORURE9Eg0Gg2io6Nx4sQJFBcXQ6FQoF27dggKCoJKpZI63mNTq9X49ddfcf36dQBAt27dEBISYrhdEEXcLtQhXa1FulqL1PxiZBbqDEWyyihkgLNKAQ9LJdwsTOBmYQInlQJy2ZPpBnuQzZs34/Tp01CpVJg2bRocHR1r5bhERER1EQtiRm7Pnj34559/MGvWLDg4OEgdhwDExsYiJiYGxcXFMDc3R0hICNq2bSt1LCIiomq5e/cuIiIicOnSJYiiCHNzc/Ts2RN9+/Y1mu7nW7duYcOGDbh3757huvIFscoIoog7RQKKBRE6UYRWBExkgEImg1Iug52ZvNaKX1WJjY3Frl27IJfL8cwzz3BKDSIiarBYEDNykZGROHLkCObMmcNJ3esQQRAQHR2NuLg4CIIAOzs7jBw5ksNaiYiozrp27Rp27tyJ9PR0AICDgwMGDRoEPz8/iZM9WVevXsUvv/wCnU6H0i+TO3TogFGjRkkX7AlKTk7G+vXrodPp0L9/fwwYMEDqSERERLXOROoAVLOKi4sBwCiGLhgTuVyOwMBADBgwADt27EBiYiLWrVsHV1dXhIWF1fs5V4iIyHgcO3YMBw4cMHRLNWnSBMHBwUY7FcP169eh1WorXK/RaCRIUzO8vLwwe/ZsrFixAgcPHsTNmzcxfvx4o+nwIyIiqg52iBm58PBwJCYmYv78+VJHofvIy8vDli1bcOXKFQCAt7c3QkND2dVHRESS0Gq12LdvHxISEqDRaCCXy9G6dWsEBwfD0tJS6ng1Li0tDVu2bDGslgkAzZo1w4QJEyRM9eQJgoC1a9fi+vXrsLOzw4wZM2Bubi51LCIiolrBDjEjp+8Qo7rNysoKEyZMQFZWFsLDw3H16lV89tln8PPzw4gRI7gSFBER1Yq8vDxERkbi/PnzEAQBZmZm6Nu3LwYMGNCguofc3d2Rm5sLpVKJHj164MiRI1Aqa2YFSCnJ5XK88MILiIqKQnx8PD7//HNMmTLFaLv/iIiISmOHmJFbv349Ll++zA6xeiYlJQVbt25FTk4O5HI5unXrhsDAwAb1ZoSIiGpPamoqIiMjcfPmTQCAra0tAgIC0LFjR2mDSSQxMRHh4eHo2bMngoKCoNVqIZPJoFAopI5WY06ePIlt27YBAEaMGNFgH3siImo42CFm5PQv4Kh+8fT0xOzZs5GUlISIiAjExcXh2LFjCAgIQO/evaWOR0RERiIxMRF79+7FnTt3AJR0RgUHB6NJkybSBpNYTEwMZDIZBg0aBAAwMTH+l8wdOnSAi4sL1qxZg23btiE1NfWBq2oSERHVZ8b/172BY0GsfvPz84Ofnx9iY2MRExODPXv24NChQwgJCUHbtm2ljkdERPWQIAg4cOAA4uPjUVhYCJlMBh8fH4SEhMDGxkbqeJJLS0tDTk4OWrVq1SAKYaW5u7vjjTfewPLly3HkyBGkpaVhypQp7FAnIiKjxCGTRu7HH39EZmYm3nvvPamj0GMSBAF79+5FbGwsBEGAra0tRo0aBS8vL6mjERFRPaBWq7Fz504kJSVBp9NBqVSic+fOeOqppxpc4ed+Vq9ejevXr+O1116Dra2t1HEkIQgCfv31V1y8eBGWlpaYMWMGi6VERGR0WBAzct999x1ycnLw7rvvSh2FnhCtVovt27cjMTERoijC1dUVYWFhcHZ2ljoaERHVQbdu3UJERARSUlIAlCzk0r9/f3Tp0oWdP+Wo1WosW7YMrq6uePHFF6WOI7n9+/fjwIEDUCgUeP755/khHBERGRUWxIzc119/jby8PMydO1fqKPSE5efnY/Pmzbhy5QoAwMvLC2FhYbCyspI4GRER1QXnz5/Hnj17kJWVBQBwcXHBkCFD4O3tLXGyumvz5s04ffo0Jk6cyPvpf86fP49NmzZBEAQEBgaiV69eUkciIiJ6IlgQM3JffPEFioqK8NZbb0kdhWpIVlYWwsPDkZaWBplMBj8/P4wYMQKmpqZSRyMiolomCAIOHz6Mf/75B2q1GjKZDM2aNcPQoUNhb28vdbw6TRAELF68GObm5pgzZ47UceqU7OxsrFy5EgUFBWjTpg3GjBkjdSQiIqLHxgkjjJwgCBwOYeQcHR0xY8YMpKSkYOvWrThz5gzOnj2Lbt26ITAwkI8/EVEDoNFosHPnTpw+fRparRYmJibo3LkzgoKC+AFJNf3111/Q6XTo16+f1FHqHAcHB7zxxhtYuXIlzpw5g4yMDEyfPp3PLSIiqtfYIWbkli1bBrlczk86G5CkpCRERERArVZDqVQiICAAvXv3ljoWERHVgOzsbERERODq1asQRREWFhbo06cPevbsyQ9EHtLSpUuh1Wrx9ttv8767D/2wUpVKhalTp8LJyUnqSERERI+EHWJGThAErhzVwPj5+cHPzw+xsbGIiYnBnj17cOjQIYSEhKBt27ZSxyMioifgypUr2LVrF27dugWgpFt48ODB8PHxkThZ/XT27FkUFBSga9euLIY9QGhoKBo3boyoqCh8//33GDNmDFq3bi11LCIioofGDjEjt2TJElhaWmL27NlSRyEJCIKA6OhoxMXFQRAE2NraYtSoUVwlioioHhIEAUePHsXBgweRl5cHAGjatClCQkLg4uIicbr67ZtvvkF2djbefvttDgOsppSUFPz888/QarXo168fBg4cKHUkIiKih8LWISMniiIUCoXUMUgicrkcgYGBGDhwILZv347ExESsW7cOrq6uCAsLg7Ozs9QRiYjoAbRaLfbs2YPjx4+juLgYCoUC7du3R1BQECwsLKSOV+/dunULWVlZaNasGYthD8HT0xP/+te/8OOPP+Kvv/7CzZs38dxzz7HDjoiI6g12iBm5RYsWwcnJCS+++KLUUagOUKvVCA8Px5UrVwAAXl5eCAsLg5WVlcTJiIiovHv37iEiIgIXL16EKIpQqVTo0aMH+vfvz6LDE7Ru3TokJydj1qxZcHBwkDpOvSMIAtatW4eUlBTY2tpixowZLNQSEVG9wIKYkfvwww/h5uaG6dOnSx2F6pCsrCyEh4cjLS0NMpkMfn5+GDFiBD8ZJyKqA65fv46oqCikpaUBAOzt7TFw4EDOA1kDCgsL8fHHH8PZ2Rkvv/yy1HHqtV27diE2NhZKpRKTJ0+Gh4eH1JGIiIjui0MmjZwoipxUnypwdHTEjBkzkJKSgq1bt+LMmTM4e/YsunXrhsDAQHYeEBFJ4MSJE9i3bx/u3bsHAGjUqBFCQkJYWKhBu3btAgAEBgZKnKT+CwoKgoeHB7Zs2YKVK1di+PDh6NSpk9SxiIiIqsRKiZFjQYzux9PTE7Nnz0ZSUhIiIiIQFxeHY8eOISAgAL1795Y6HhGR0dNqtdi/fz8SEhJQVFQEuVwOPz8/BAcHczh7DRMEAadPn4alpSVatGghdRyj0K5dO7i4uGD16tXYvn07bt68iWHDhkkdi4iIqFKslDQALIjRg/j5+cHPzw+xsbGIiYnBnj17cOjQIYSEhHCIDhFRDcjLy0NUVBTOnTsHQRBgamqK3r17Y8CAAfy7XUsOHz4MnU6HXr16SR3FqLi6uuL111/H8uXLcfToUaSlpWHKlCl8XhMRUZ3DOcSM3IIFC+Dn54enn35a6ihUTwiCgL179yI2NhaCIMDW1hajRo2Cl5eX1NGIiOq9tLQ0REZG4saNGwAAGxsbBAQEcGiZBJYtWwaNRoO5c+dyqoAaIAgCNm3ahPPnz8PCwgIzZ86EjY2N1LGIiIgMWBAzYoIg4MMPP0SHDh0watQoqeNQPaPVarF9+3YkJiZCFEW4uroiLCwMzs7OUkcjIqp3zpw5g7179yInJwcA4ObmhuDgYHh6ekqcrGG6ePEifvnlF3Tq1AkjRoyQOo5RO3jwIPbt2weFQoHx48ejWbNmUkciIiICwIKYUdOvnNSlSxfO30CPTK1WIzw8HFeuXAEAeHl5ISwsjHPbEBE9gCAI+OuvvxAXF4eCggLIZDK0aNECQ4cOha2trdTxGrTvvvsOt2/fxn/+8x+oVCqp4xi9ixcv4tdff4UgCHjqqafQp08fqSMRERFxDjFjVlhYCAAwNTWVOAnVZxYWFpgwYQKysrIQHh6O5ORkfPrpp2jTpg1GjBjB5xcRUTmFhYXYuXMnEhMTodPpoFQq0b17dwwaNIi/M+uA7OxsZGZmwsvLi8WwWtKyZUu8+uqrWLFiBaKjo5GamoqwsDAOVSUiIkmxIGbEioqKAABKpVLiJGQMHB0dMWPGDKSkpGDr1q04c+YMzp49i27duiEwMJAvaomowcvMzERkZCSSk5MBAFZWVujXrx+6du3K35F1SEREBAAgJCRE4iQNi729Pd544w2sWrUKSUlJuHXrFqZPn84iMRERSYZDJo1YSkoK1qxZg0GDBqFv375SxyEjk5SUhIiICKjVaiiVSvj7+3MIBBE1SBcvXsTu3btx+/ZtAICzszMCAwPRokULiZNReRqNBv/973/h4OCAV199Veo4Dda2bdtw4sQJmJmZYerUqZyflIiIJMEOMSOm7xDjJ29UE/z8/ODn54e4uDjExMQgOjoaf//9N4KDg9GuXTup4xER1ShBEBAXF4dDhw5BrVZDJpOhWbNmCAkJgaOjo9TxqAp79uyBKIp46qmnpI7SoI0cORIeHh6IjIzEDz/8gLCwMPj5+Ukdi4iIGhgWxIxYcXExAA6ZpJrVo0cPdOvWDXv37kVsbCw2b96MvXv3YtSoUfDy8pI6HhHRE6XRaLB7926cPHkSWq0WCoUCnTp1QmBgIOejquMEQcCJEydgbm4OX19fqeM0eN26dYObmxt++ukn/P777+jTpw8LlUREVKs4ZNKIHT9+HNu3b8fTTz/NT92oVmi1Wmzfvh2JiYkQRRGurq4IDQ2Fi4uL1NGIiB5LTk4OIiIicOXKFYiiCHNzc/Tu3Ru9e/fm/GD1RFxcHHbu3IkBAwagf//+Useh/8nLy8Py5cuRm5sLb29vPP/88/yZIiKiWsGCmBGLj49HVFQUnnvuOc5jQrVKrVYjPDwcV65cAQB4eXkhLCwMVlZWEicjIno4ycnJ2LlzJzIyMgAADg4OGDx4MDuM6qFPP/0UBQUFeOedd1hwqWMEQcBPP/2Ea9euwcbGBjNnzoSFhYXUsYiIyMixIGbEDh06hL1792LKlCnw9PSUOg41QFlZWQgPD0daWhqAknnHRo4cyXntiKjOS0hIwMGDB5GbmwsA8PT0REhICFxdXSVORo/i6tWr+Omnn9CuXTuEhoZKHYeqsHv3bhw+fBhKpRKTJk1Co0aNpI5ERERGjHOIGTGNRgMAMDMzkzgJNVSOjo6YMWMGUlJSsHXrViQlJeHcuXPo2rUrgoKC+Ak9EdUpWq0We/fuxbFjx6DRaCCXy9G2bVsEBwezW6We27VrFwBgyJAhEieh+wkMDISHhwc2b96MVatWYdiwYejcubPUsYiIyEixIGbEtFotAHCSX5Kcp6cnZs+ejaSkJERERCA+Ph7Hjx+Hv78/+vTpI3U8Imrg7t27h6ioKFy4cAGCIEClUqF///7w9/dn4d4I3L17FxkZGWjSpAkLm/VA27Zt4eLiglWrVmHHjh24efMmhg8fLnUsIiIyQhwyacT+/PNPHD16FG+99RaLYlSnxMXFISYmBhqNBubm5ggODka7du2kjkVEDcyNGzcQFRWF1NRUAICdnR0GDhzI30dG5pdffsHFixcxY8YMuLu7Sx2HqqmwsBArVqxAdnY23N3d8cILL8DEhJ/lExHRk8OCmBHbunUrTp48iXnz5vETbqpzBEHA3r17ERsbC0EQYGtri1GjRsHLy0vqaERk5E6dOoWYmBjcvXsXAODh4YGQkBDOV2SEtFotFi9eDDs7O8yePVvqOPSQBEHA77//jnPnzsHCwgIzZsyAra2t1LGIiMhIsCBmxH7//XckJSVh/vz5UkchqpJWq8X27duRmJgIURTh6uqK0NBQuLi4SB2NiIyIIAjYv38/4uPjUVRUBLlcjlatWiEkJATW1tZSx6MasnPnTsTFxSEsLAxt27aVOg49or/++gsxMTFQKBR49tln0bx5c6kjERGREWBBzIjphwiwIEb1gVqtxubNm3H58mUAgJeXF0JDQ/lGlYgei1qtRlRUFJKSkiAIAkxNTdGlSxcMHDiQw68agCVLlkAul+Ott96SOgo9pkuXLmHjxo0QBAFPPfUU5yAlIqLHxoKYEfv5559x5coVFsSoXsnKykJ4eDjS0tIAAH5+fhg5ciRMTU0lTkZE9UlGRgYiIiJw/fp1AIC1tTX8/f3RpUsXiZNRbTl27Bh27NiBfv36YeDAgVLHoSfgzp07WL58OQoKCuDr64unn36a04IQEdEjY0HMiK1ZswbXr1/H+++/L3UUooeWkpKCrVu3IicnB3K5HF27dkVQUBBf+BLRfZ09exbR0dHIzs4GALi5uSEoKIjzEzZAn3/+OfLy8vDuu+/yb4cR0Wq1WL16NdLS0uDo6IgZM2bwQzMiInokLIgZsRUrViA9PR3z5s2TOgrRI0tKSkJkZCTy8/OhVCrh7+/PYRJEVIYgCPj7779x+PBhFBQUQCaToXnz5hg6dCjs7OykjkcSuH79OlavXg0/Pz88/fTTUsehGrBt2zacOHECZmZmmDp1KpydnaWORERE9QwLYkbshx9+wO3bt/Hee+9JHYXoscXFxSEmJgYajQbm5uYIDg5Gu3btpI5FRBIqLCzErl27cPr0aeh0OpiYmKBjx44YPHgwO0YauOXLlyMtLQ1z5syBlZWV1HGohiQkJCAyMhIAEBYWhjZt2kiciIiI6hPOJmvEdDodhwiQ0ejRowe6deuGvXv3IjY2Fps3b8bevXsxatQoDoUiamCysrIQERGB5ORkiKIIS0tL9O3bF927d+ffPUJubi7S0tLg4eHBYpiR69q1K9zc3LBu3Tr88ccfSE1NxeDBg6WORURE9QQ7xIzYV199BbVajbffflvqKERPlFarxY4dO3D69GmIoghXV1eEhobCxcVF6mhEVIMuXbqE3bt3IzMzEwDg5OSEwMBAtGzZUuJkVJf89ttvOHfuHKZOnYrGjRtLHYdqQV5eHlasWIF79+7By8sLEyZMYHGciIgeiAUxI/b5559Do9FwqXEyWmq1Gps3b8bly5cBAE2bNkVoaChsbGwkTkZET4ogCIiPj8ehQ4eQn58PAPDy8kJISAjnDKIKtFotlixZAmtra7z22mtSx6FaJAgCfv75ZyQnJ8PGxgbTp09nhyAREd0XC2JG7NNPP4UgCPj3v/8tdRSiGpWVlYXw8HCkpaUBAPz8/DBy5EjOIURUj2k0GkRHR+PEiRMoLi6GQqFAu3btEBQUBJVKJXU8qqOio6Px999/Y8SIEejUqZPUcUgCe/bswT///AMTExNMnDgRTZo0kToSERHVUZxDzIgJggCFQiF1DKIap192/fr169i6dSuSkpJw7tw5dO3aFUFBQRw2QVSP3L17FxEREbh06RJEUYS5uTn69u2Lvn378meZHighIQGmpqYshjVggwcPhoeHB8LDw7F69WoMHToUXbt2lToWERHVQSyIGTFBEKBUKqWOQVRrmjRpglmzZiEpKQmRkZGIj4/HsWPHEBAQgD59+kgdj4juIyUlBVFRUUhPTwcAODg4YNCgQfDz85M4GdUXp06dQlFREXr16iV1FJJYmzZt4OzsjNWrVyMiIgKpqakYMWKE1LGIiKiO4ZBJI7ZkyRJYWVlh1qxZUkchkkRcXBxiYmKg0Whgbm6O4OBgtGvXTupYRFTKsWPHcODAAdy7dw9ASWE7ODgY7u7uEiej+ubLL7/EvXv3MHfuXJiY8DNfKhl6vXz5cmRlZcHNzQ1Tp07lc4OIiAxYEDNiH330Eezt7fHyyy9LHYVIMoIgICYmBrGxsdDpdLC1tcXIkSPh7e0tdTSiBkur1WLfvn1ISEiARqOBXC5H69atMWTIEE6CTY8kNTUVK1asgI+PD8aNGyd1HKpDBEHAH3/8gbNnz8Lc3BwzZsyAnZ2d1LGIiKgOYEHMiC1atAjOzs6YOXOm1FGIJKfVarFjxw6cPn0aoijCxcUFYWFhcHFxkToaUYORl5eHyMhInD9/HoIgwMzMDN26dcOAAQM4Pxg9llWrVuHGjRt4/fXXudIwVervv/9GdHQ05HI5nn32WbRo0ULqSEREJDH2DBsxURTZFk70PyYmJhg9ejSCgoKwefNmXL58Gd9//z2aNm2K0NBQvoEiqkGpqamIjIzEzZs3AQC2trYYMGAAOnToIHEyMgZqtRo3btyAm5sbf5dTlfr06QM3Nzds3LgRGzZswMCBA9GvXz+pYxERkYTYIWbEFi5cCE9PT0yePFnqKER1TlZWFsLDw5GWlgYA8PPzw8iRI2FqaipxMiLjkZiYiL179+LOnTsAAHd3dwQHB6NJkybSBiOjEh4ejsTEREyePBlNmzaVOg7VcXfv3sXy5cuhVqvh4+ODZ555hh2qREQNFNuHjBg7xIiq5ujoiBkzZuD69evYunUrkpKScO7cOXTt2hVBQUF8cUz0iARBwIEDBxAfH4/CwkLIZDL4+PggJCSE3Tv0xAmCgKSkJFhbW7MYRtVia2uL119/HWvWrMH58+fx7bffYvr06VCpVFJHIyKiWsYOMSO2YMECTi5LVE1JSUmIjIxEfn4+TExMEBAQgD59+kgdi6jeUKvV2LlzJ5KSkqDT6aBUKtG5c2c89dRT/HCGasz+/ftx4MABhISEoFu3blLHoXpm+/btOH78OExNTfHCCy/A1dVV6khERFSL+ArVyCmVSqkjENULfn5+8PPzQ3x8PPbu3Yvo6Gj8/fffCA4ORrt27aSOR1Rn3bp1CxEREUhJSQEAWFlZoX///ujSpQs7LanGxcfHQ6lUokuXLlJHoXpoxIgRaNy4Mf7880/8+OOPCA0NRdu2baWORUREtYQFMSOl1WoBsCBG9LC6d++Orl27IiYmBrGxsdi8eTP27t2LkSNHwtvbW+p4RHXG+fPnsWfPHmRlZQEAXFxcMGTIEP6cUK1JSkpCQUEBunXrxuIrPbLOnTvD1dUV69atQ3h4OFJTUxEYGCh1LCIiqgUcMmmk8vLy8Omnn6Jbt24ICQmROg5RvaTVarFjxw6cPn0aoijCxcUFYWFhcHFxkToakSQEQcDhw4fxzz//QK1WQyaToVmzZhg6dCjs7e2ljkcNzNdff42cnBy8/fbbXBCFHptarcaPP/6Ie/fuoWnTppg4cSILrURERo4FMSOVnZ2Nr7/+Gr1798bgwYOljkNUr6nVamzevBmXL18GADRt2hShoaGcIJwaDI1Gg507d+L06dPQarUwMTFB+/btERQUxEIESSIjIwM//PADWrRogeeee07qOGQkBEHA+vXrcfXqVVhbW2PGjBmwsrKSOhYREdUQFsSMVFpaGpYvX46AgAD4+/tLHYfIKGRnZ+OPP/5AWloagJJ5x0aOHMmCABmt7OxsRERE4OrVqxBFERYWFujTpw969uzJzgmS1Nq1a3Ht2jXMnj2b3Yn0xO3duxeHDh2CiYkJJk6ciCZNmkgdiYiIagDnEDNSRUVFADiHGNGT5ODggBkzZuD69evYunUrkpKScO7cOXTt2hVBQUEsEJDRuHLlCnbt2oVbt24BABwdHTF48GD4+PhInIwIKCwsxLVr1+Di4sJiGNWIQYMGwd3dHeHh4Vi9ejVXMSUiMlIsiBkpfUGMnStET16TJk0wa9YsnD17FhEREYiPj8exY8cQEBCAPn36SB2P6JEIgoCjR4/i4MGDyMvLA1AyPDgkJITz5lGdsnPnTgDgxOdUo/z8/ODs7IxVq1YhMjISN2/exKhRo6SORURETxALYkZKo9EAYIcYUU1q3bo1Wrdujfj4eOzduxfR0dH4+++/ERwcjHbt2kkdj6hatFot9uzZg+PHj6O4uBgKhcIwP5iFhYXU8YjKEAQBiYmJsLS0RPPmzaWOQ0bO2dkZb7zxBlasWIGTJ08iIyMDU6dOhYkJ30IRERkDziFmpI4ePYo///wTY8eOha+vr9RxiIyeIAiIiYlBbGwsdDodbG1tMXLkSHh7e0sdjahS9+7dQ0REBC5evAhRFKFSqdCjRw/079+fw3+pzjp06BD27t2LwMBA9OrVS+o41EAIgoDw8HAkJSXB3Nwc06dP53BdIiIjwIKYkYqNjcWuXbswceJEviEnqkVarRY7duzA6dOnIYoiXFxcEBYWxiFnVGdcv34dUVFRhsUh7O3tMXDgQLRt21biZEQPtmzZMmg0GsydO5eFW6p1f//9N6KjoyGXyzFu3Di0bNlS6khERPQYWBAzUgcPHsS+ffswbdo0NGrUSOo4RA2OWq3G5s2bcfnyZQAlczGNGzcOKpWq0u3//vtv9OnTB6IoQiaT1WZUaiBOnDiBffv24d69ewCARo0aISQkBB4eHhInI6oeURRx6tQp3Lx5EyEhIVLHoQbq6tWr2LBhA3Q6HQYMGID+/ftLHYmIiB4RC2JGSj+X0SuvvAInJyep4xA1WNnZ2fjjjz+QkZGBuXPnQqFQVCh4/fe//8XixYsNhQqiJ0Wr1WL//v1ISEhAUVER5HI5fH19ERwcDCsrK6njET2U0i9Z+cEBSenevXtYvnw58vPz0apVK4wdO5Ydi0RE9RALYkaKLxqJ6pa8vLwqCxCOjo5YuXIlRo8ejeXLl+Pu3bv497//XcsJyZjk5eUhKioK586dgyAIMDU1RdeuXTFgwABOBk1E9ARotVqsXbsWN2/ehIODA6ZPn15lFzgREdVNLIgREUnonXfewZ9//olTp06hqKgIZmZmuHHjBho3bgygZMVYU1NTiVNSfZGWlobIyEjcuHEDAGBjY4OAgAB06tRJ4mRED4fDx6m+iIiIQEJCAkxNTfHCCy/A1dVV6khERFRNLIgREUmksLAQNjY22L17NwICAjB27Fi4u7vjk08+gUajwb59+/DRRx9h0KBBWLhwId8cUpWSkpIQHR2NnJwcAICbmxuCg4Ph6ekpcTKih5OdnY2YmBjcuXMHo0ePhqOjo9SRiB7o+PHj2LFjBwBg9OjRaNeuncSJiIioOlgQIyKSyPTp03HhwgUcOHAAly9fxpAhQ7B69WqYm5vj7bffhlarxXPPPQcrKytotVr06NEDrVq1kjo21RGCIODQoUOIjY1FQUEBZDIZWrRogaFDh8LW1lbqeESP5OWXX8bNmzdx5swZPP3003jppZdw/fp1mJmZoWvXruwcozorNTUVa9euRXFxMXr06IEhQ4ZIHYmIiB6ABTEiIgncuHEDTZs2xcmTJ9G2bVuMHz8eKpUKq1evRk5ODiZPnoyTJ0+iZ8+eWL16NYKDg/Gvf/0LoaGhfEPYwBUWFmLnzp1ITEyETqeDUqlEp06dMGjQIA6vpXrtzp078Pf3x8mTJwEAffv2hbm5OVQqFRwcHPDuu+/yQwGq09RqtWEuUE9PT0yaNImT7RMR1WGcWdeIFBcXQ6PRQCaTQalUQqlUSh2JiKqwYcMGDB48GG3btkVCQgISEhIQHh4OANi+fTs8PDwwZ84c6HQ6DB48GIcPH8a3334LgAtlNFSZmZmIjIxEcnIyAMDKygp9+/ZFt27d+IaLjMKOHTvQrFkzAEBcXBwuXbqE9PR0nD9/HosXL8aPP/6I//73v3x9Q3WWhYUFZs+ejQ0bNuDKlSv4/PPPMXPmTK7qS0RUR7FDzEicPn0a0dHRhkk9mzRpgrCwMHTo0EHqaERUBa1WCxMTE/Tu3Rvt27fHDz/8gMuXL+Pzzz+Hg4MDFi5cCABo1qwZOnbsiDNnzuCNN97AzJkzJU5OtenixYvYvXs3bt++DQBwdnZGYGAgWrRoIXEyoifr1q1beO211+Du7o7Y2Fh07doVX375JQBg//79WLZsGSIiIiROSVQ9MTEx+Ouvv2BiYoIJEyZwTkciojqIHWJGICIiAkuWLIGHhweuXbsGa2tryGQyBAcH47333sPLL78sdUQiqoRCoQAALF261NAVERERgcLCQgQFBQEAVqxYAbVajc2bN0Oj0SA7O1uyvFR7BEFAXFwcDh06BLVaDZlMhmbNmiEkJISTjJNREkURzs7OGDBgAM6fP4933nkH0dHRUKvVUCqV+PzzzzF27FipYxJV28CBA+Hh4YHff/8da9asQXBwMLp37y51LCIiKoUdYkZg8ODBmDt3LgYOHAgAmDp1Kt588000adIEoaGhWLRoEf8AE9UDd+/exccffwyFQoEPP/wQAODg4IBPP/0UU6ZMAQDk5eXhl19+gZeXFwIDAyvsQ6fTQRAEDimqpzQaDXbv3o2TJ09Cq9VCoVCgffv2CAwMhEqlkjoeUa0pKirCSy+9hPDwcDz11FMoKChAZGSk1LGIHlpWVhZWrlyJwsJCtG/fHqNHj5Y6EhER/Q87xIyASqWCIAiGr2/evInMzEy0bt0aOp0OGo1GwnREVF22trZYvHgxsrKyAJR0izVu3NhQDANK5o0KCAgwDJ8r7+rVq1i8eDFcXV3x0UcfcW6peiInJwcRERG4cuUKRFGEhYUF/P390bt3bz6GZPSSk5Oxd+9erFy5EpMmTcKLL74IMzMzrF69GpMnTzas2kdUHzk6OuL111/HypUrcerUKWRkZGDatGkwMeHbMCIiqfE3sRHo1q0btmzZAoVCgePHj8PGxgaNGzcGULIaGbsKiOoX/ZC4pk2bwsLCAq+++io+++wzwwqCrVq1qnSlNUEQ4OLigqCgIMydOxc3btzAqlWruPJgHZacnIydO3ciIyMDQMlj/9RTT8HX11fiZES15z//+Q+aNm2KcePG4euvv4ZSqcTUqVMBAP3795c4HdHjMzU1xcsvv4w//vgDZ86cwWeffYZp06bBwcFB6mhERA0ah0waAVEUMWfOHGzevBleXl747rvv4Ofnh/z8fGzZsgUhISH8g0tUT2VmZuLrr7/GrFmzkJeXB29v7wd+z/Hjx/HDDz+gU6dOePHFFyGKIlemrGMSEhJw8OBB5ObmAgA8PT0REhICV1dXiZMR1a7z589j/PjxOHr0KICSVXY/+OADREVFwdXVFdu2bUPHjh3RtGlTiZMSPRmHDx/G7t27IZfL8cwzz8DHx0fqSEREDRYLYkZIp9NBLpfzDTCREREEAT///DNSUlIwb968Kre7c+cOfvzxR5w4cQKrVq2ChYUFC2J1hFarxd69e3Hs2DFoNBrI5XL4+fkhODgYFhYWUscjksRHH32EzMxMfPHFFxAEAXK5HM899xzGjx+PoUOHonnz5oiIiGDXJBmV5ORkrF+/HjqdDv7+/ggICJA6EhFRg8Qhk0YiKSkJx44dw61bt6BQKNCoUSMEBATAyclJ6mhE9ATI5XJMmjQJarUaAKoscp08eRJHjx5FaGgoLCwsDG8wS2OBrHbdu3cPUVFRuHDhAgRBgEqlQv/+/eHv78/5wajBGzp0KK5fvw6tVmv4eejfvz+io6MBAF26dGExjIyOl5cXZs+ejeXLl+PAgQNITU3FuHHj+DeBiKiWsUPMCGzbtg3z5s2Ds7MzmjVrBlEUkZycjMTERHz33XcIDQ2VOiIR1QJBELBw4UJcvXoV69atq/R2uVyOoqIi3LhxA9u3b8fo0aPh5eVV+2EbgBs3biAqKgqpqakAADs7OwwcOBDt2rWTOBlR3Xb79m2EhIQgNTUVGzduRL9+/aSORFQjBEHAmjVrcOPGDdjb22PGjBmc+5eIqBaxIGYEmjdvjt27d6N58+Zlrr9+/TqCgoIQFxcHa2tridIRUU07d+4c5s6diwEDBiAhIQHTpk1D//79odPpoFAoDNvpO8NmzZqFjIwMKBQKxMbGYvr06XjnnXckPAPjcvr0aezduxd3794FAHh4eCAkJASNGjWSOBlR3VNVx+prr72GX3/9Fenp6RKkIqpdkZGROHLkCExNTTF58mS4u7tLHYmIqEFgQcwI+Pn5Ye/evZX+8fT19cWJEyf4aRORkVuwYAFWr16NvLw8JCUlVZicXf+mc/fu3QgNDcXp06fh7e2NGzdu4N///jdWrFgBS0tLDqV8RIIgYP/+/YiPj0dRURHkcjlatWqF4OBg2NjYSB2PqN4pKipCYmIiunTpInUUolpx4sQJbN++HQAwcuRIdOjQQeJERETGjwUxIzB79mxoNBo8++yz8PT0hLm5OXJzc/HTTz8hISEBERERnJOAqAEoLi7Gf/7zH1y/fh2ffPJJpUMhO3fujGeeeQZvv/02AODUqVMIDAzEzZs3oVAooNFocPr0ab4JrSa1Wo2oqCgkJSVBEASYmpqiS5cuGDhwIExMOE0n0cPQF+7VajUXmqAGKS0tDWvWrEFxcTG6d++O4OBgqSMRERk1FsSMgE6nw/z58/HTTz9BrVZDp9NBJpNh7Nix+Oijj+Dg4CB1RCKqRQUFBTAzM0N2djZ27dqFZ599FnK5HFFRUZg4cSIyMzMN286bNw+ZmZn44YcfsG3bNqxduxa5ubkoLCzEyy+/jPHjx0t4JnVXRkYGIiIicP36dQCAtbU1/P39WUgkegiVLfoBAB9++CGaNGmCyZMn134oIokVFBRg+fLluHPnDho3bowpU6bwg20iohrCghgRkZG6e/culi1bhkWLFgEA3nnnHWg0GnzyyScASua6WrhwIcaMGYOxY8eiVatWmDVrFl5++WWcOHEC7733Hr799ls0a9ZMytOoU86ePYvo6GhkZ2cDANzc3BAUFMSFCYgeQkpKCjw9PQ1fC4IAmUxmGLJ96dIlNG7cmNM9UIMlCAI2btyIS5cuwcrKCtOnT+fweyKiGsCCmJEQRRGiKBo+QdIPO6jq01ciangiIiLw66+/4ueffwYAPPfcc3B3d8crr7wClUqFMWPGYMOGDYbiTqdOnbB06VIMHjxYwtTSEwQBf//9Nw4fPoyCggLIZDI0b94cQ4cOhZ2dndTxiOqV5ORkDB8+HL169cKwYcMwdOjQMot/5OTkwN7eXsKERHXHvn37cPDgQSgUCjz//PP88IWI6AljpcRIyGSyMoUvmUyGO3fuYNSoUdKFIqI6xdfXF6mpqejduzemT5+O06dP44033oC3tzfc3d3RuXNnrFu3DgDwxx9/wNnZGY6OjhKnlk5hYSG2bduGxYsXIyYmBsXFxejatSvefvttPPfccyyGET2C//73v7CxsYGfnx9++uknTJgwAStWrMCdO3cAAPPnz0dWVpa0IYnqiAEDBmDs2LEQRRHr1q1DbGys1JGIiIwKO8SMmFarxdmzZ9GuXTupoxBRHbJx40a4uLjAz88P7u7uKCgogLm5ORITE7Fw4UIAJUMDXV1d8d1336FVq1YSJ65dWVlZiIiIQHJyMkRRhKWlJfr27Yvu3buz45boMYiiiEWLFqFHjx7o2rUrEhMTkZCQgGPHjkEmkyEzMxN3797F4cOHpY5KVKdkZWVh5cqVKCwsRNu2bREWFiZ1JCIio8CCGBFRAyaKIv7880+0adPGMFfYypUrceDAAXTu3Bmvv/66xAlrz6VLl7Br1y7cvn0bAODk5ITAwEC0bNlS4mRExiMrKwsKhcLQYZmfn4/z58/j0qVLmDZtGjZt2oQhQ4ZIG5KoDtJoNFi1ahVu3boFFxcXTJ06FaamplLHIiKq11gQM2JZWVnYsmULpk2bJnUUIqrD1q9fj7lz5yI0NBTdu3fH3Llz8eqrr2L8+PFo3LgxgJLCWWFhIczNzSVO+2QJgoD4+HgcOnQI+fn5AAAvLy8MHToUTk5OEqcjajh27tyJqVOn4ubNm1JHIarTNm/ejNOnT0OlUmHatGkNemoDIqLHxYJYPVdcXIybN29CLpfD1NQUSqXS8Mnr4cOH8fLLL+P48eNSxySiOu727dtYvHgxXFxc0KxZMzzzzDOG2/R/Jr744guoVCqEhobC1dVVqqgPlJGRAQcHByiVSsMCI+VpNBpER0fjxIkTKC4uhkKhQLt27RAUFMSV7YgkcOTIEWRkZGDYsGFSRyGq82JjY7Fr1y7I5XI888wz8PHxkToSEVG9xIJYPXf69Gk888wzaNeuHYqKiiCTySCKIlQqFa5evQqFQsG5OIjosWm1Wvz222+4dOkSAMDT0xNhYWF1ahn4Xbt2YdmyZdBqtfDy8sLXX38Na2vrMtuIooh79+7hyy+/hCiKMDc3R8+ePdG3b1/OD0ZERPVGcnIy1q9fD51Oh/79+2PAgAFSRyIiqndYEKvnoqOjMWHCBGzatAn37t2DIAgoLi6GhYUF9u7di7i4OBw8eFDqmERkJLKzsxEeHo7U1FQAQOvWrTFq1CjJ5zG5fv06Jk+ejBkzZmDs2LEICwuDs7MzXn31VbRt27bMtqIoYv369ejSpQv8/PwkSkzUcAmCwAI00RNw7949rFixAnl5eWjevDnGjx/Pny0ioodgInUAejz29vYYMWIE2rdvD1tb2zK3iaKIU6dOSZSMiIyRg4MDpk+fjhs3bmDLli04e/Yszp8/jy5dumDIkCG19kI8OzsbMpkM9vb2AIDff/8dXl5eGDt2LABg1qxZCAsLg7e3d4WCGABMmDChVnISUYnSw5f5hp3oybCxscHrr7+OtWvX4vLly/j6668xY8YMo5vvk4iopvAVST3Xpk0bvPPOO1AoFBVu8/f3x7p16yRIRUTGrnHjxpg1axbGjh0LCwsLHDlyBEuWLMGhQ4dq9Ljp6emYPn062rdvjxdffBHz588HALRv3x6RkZG4evUqACAvLw9dunTBxYsXcfny5TL7qGxOMSKqWfqfu3fffRfp6ekSpyEyHnK5HC+88AK6d++OO3fu4PPPP0daWprUsYiI6gUOmSQiosd25MgRREdHQ6PRQKVSYciQIejQocMTP8769euxbds2bNq0CYmJiQgLC8OyZcswcuRIvPDCCygoKEBKSgrc3d0xcOBA7NixA2vWrIGbm9sTz0JED1a6Myw3NxdbtmzBxIkTDbdnZGTU6UU6iOqTkydPYtu2bQCAESNGoGPHjtIGIiKq41gQIyKiJ0IQBOzbtw+HDx+GTqeDjY0NRo4ciWbNmj2R/et0OkyfPh0BAQGGN9RLlizB5cuX8e6778Lb2xuXLl1Ceno6+vbti+LiYjRt2hSJiYlwcHB4IhmI6NF8+eWXmD59OpRKJZRKJQAgLi4OmzdvxscffyxxOiLjkZaWhjVr1qC4uBjdunVDSEiI1JGIiOosFsSIiOiJ0mq1iIiIwMmTJyGKIpydnREWFvZYXSD6SbgnTZoEU1NTrFixAgBw5coVzJkzB5MnT8bIkSPLfM+8efMgCAI++uijxzofIno0KSkpKCgoQG5uLmbOnImjR49Cp9NBLpdDJpMhPT0dOp0OjRo1kjoqkVEpLCzE8uXLkZOTg8aNG2PKlCmcu4+IqBL8zUhERE+UiYkJRo4ciTfffBMdOnRAYGAgnJ2dAZQMn6rK+fPn8emnn+LmzZsASopg5b388ssIDw837KdZs2aws7PD6dOnAQBZWVn45ptv0LRpU1y+fJmT5xNJaP/+/QgODkbPnj3h6+sLAFAoFJDJZEhKSsKZM2dYDCOqASqVCq+++ipatmyJGzdu4LPPPsO9e/ekjkVEVOewIGZE8vLyoFarDV9X9maSiKi2WFhYYNSoUWjevLlhDqHKJrQvLi7Gl19+iR49emDVqlXYsGFDhW31n2z36NEDLVq0wJIlSwy3derUCYmJiQBKVt7t2LEjDh06hF9++cXwJpyIateOHTug1Wpx7tw5dOjQAfHx8bC0tMTs2bORl5eH//znP0hISJA6JpHRksvlGD9+PAICApCfn4+vvvoKycnJUsciIqpTOGTSCOiHEq1evRpmZmZ47rnnAABr1qyBmZkZxo8fL3FCIqKqFRcX4/DhwzAzM8P169fx66+/YsWKFbC3ty8zIbdOp4NCocCBAwfw0ksv4bXXXoOHhwcWL16MBQsWYPDgwRKfCRHpDRkyBEFBQdBqtbCyssJLL72EAwcOYN68ebhw4QICAgKwfv16mJiYSB2VyOidP38emzZtgiAICAwMRK9evaSORERUJ7AgZkQuXboEExMTeHl5AQBOnToFMzMz+Pj4SBuMiOgBCgsLoVKpcPToUXz++ecYOHAgXnjhBUPBv7zdu3djy5YtuHDhAiZMmIDJkyfXfmgiqtLGjRvx559/Yv/+/fjkk08wbtw4Q3E7OzsbWq0WLi4uEqckajhycnKwYsUKFBQUoE2bNhgzZozUkYiIJMeCmJG4ePEi7O3t4eTkZOioyMnJgZmZGSwsLKSOR0RULbm5uVixYgUSEhIMXa6lbzt16hT69OkDACgqKipzOxHVHVqtFlOnTkVsbCwGDRoEc3NzdOvWDf7+/nB3d5c6HlGDpNVqsXLlSty9exdz5swxzOlX3v+xd9/hURXYw8e/U5JMJj2khwQkgQSUXhQl0hRIUEDBVVAEFdC1sLZdy66/3dVd67piV+wKFqSokITei0DoNSQCkt5IT6beef9gMy+hB5LcZHI+z+NjmLlz5ySQ5M6ZUzIzM4mNjVUhQiGEaF4yQ6yVq8tnvvrqqyxZsqTebc888wzz5s1TLTYhhLDb7eccpH++92J8fHzo3bs3VquVrVu3AqfmIwKkpKSwYcMG57GSDBOi5amuriY3Nxe9Xs8999zDd999x+jRo3Fzc2PlypU888wzrFixQu0whWiT9Ho9Dz30EI899th5k2HLli2jS5cuHD9+XOYRCyFcngxuaOWKi4spKSkhLy+PgoICsrOzqaqqIjw8nMLCQjw9PdUOUQjRBm3dupXff/8ds9l81qbH33//ncjIyPPODho6dCjbt2/nhRdewMvLi1tuuYU//vGP3Hnnnc0RuhDiCnz77bdoNBpuuukmvL296dOnDwA33ngj27dvZ/Xq1XTu3FnlKIVo287XPZKTk8Mf/vAH3n33XTp27MiJEyeIjo5u5uiEEKL5SMtkK7dkyRL+8Y9/sG/fPgwGA4qiYLfbsVqtjB8/njfeeIOoqCi1wxRCtBHp6emMHz+eW265halTp9KtWzdeeOEFFi1axNy5czEajbz77rtMmzaNa6655pznmDNnDk8//TQRERFMmzaNhx9+uJk/CyHElbBarbz66qv85z//4aabbmLq1KmMGjUKNze3884FFEKor1OnTgwfPpxPPvkEgA8//BCDwcB9992ncmRCCNE0JCHWyn3yySdMnz6dv/71r0ycOPG8LzCFEKKplJSU4OnpidFoZPv27bzzzju88MILbNq0iWeeeYb27duzZMkSIiIisFqtuLm5XfB8b731Fp06dWLs2LHN9BkIIRrDmjVraN++vbMCLC8vj1mzZrFo0SLCw8MZN24cjz766EV/Bgghmt+IESOora11jiZ45JFHeOONN2QWsRDCpclbdK3cnDlzWLFiBYcPHyYzMxNFUaioqMBkMmGz2dQOTwjRBjzyyCP89ttvAOzatYtVq1YxatQoqqur+fzzz8nIyCAiIgKHw3HONskz35d54oknJBkmRCv0ww8/EBcXx/Dhw1m9ejXh4eG89tprpKenM27cOJYvXy7JMCFaoKeeeorDhw+zevVqAB577DHWr19PSUkJxcXFHDlyhHfeeYevv/5a5UiFEKJxSYVYK/fXv/6VEydOsGbNGvr37090dDQ2mw13d3cqKyv5+9//Li2TQohG98ADDxASEsIrr7yC3W4nPT2d0NBQ5syZQ0pKCj169OCNN94AoHPnzjz88MM88cQTzscfP36clJSUBrdD1m3RdTgcOBwOab0SooUpLy/nH//4Bx9//DERERE8++yzTJs2Te2whBDnMX/+fP7whz9w+PBhunTpwqxZs5g9ezbff/89cXFx3HPPPRw/fpy+ffuya9cuZs6cyd1336122EII0SjklUQr9+KLL/LAAw8QHh5O9+7diY+Pp1OnTkRGRhIaGipb2IQQTSIxMZHPPvvM+ef+/fuzYcMG/vSnP/HUU09RUlJCcnIyAC+88AJvvvkmAIsWLaK4uJjc3NzLStY7HA527tzJyy+/zBtvvMGePXsa5xMSQjQKPz8/3nrrLWpqanj88cd56aWXMBqN/O1vf1M7NCHEOSQlJbFx40a6dOlCamoq77//Pq+99ho9evSgqKgIPz8/8vPz8fDwYOvWrWi1WlJSUtQOWwghGoVUiLmITZs2cd1116HT6dQORQjRRkRGRvLSSy9x//338+yzz5KRkcGCBQvIycnh9ddfJyAggH/84x8AjBkzhoKCAhRFYd68eVx11VWX/byKorB27Vo2b96M3W7H19eXsWPH0qlTp0b6zIQQjemnn37i6NGjPPnkk2qHIoQ4j+LiYuLi4njuued4+umnyc/P5/3336e8vJzbb7+dRYsWUV5ezrfffktqairDhw9XO2QhhLhikhBr5ZYsWcKIESPYtGkT5eXleHp64uHhgYeHB1qtlr59+55zZo8QQlypd955h/fee48jR46Ql5fH9ddfzw8//MCAAQP46quvWLlyJTNmzCAhIYHCwkLMZnOjtnDbbDaSk5PZs2cPDoeD4OBgxo8fT2hoaKM9hxBCCNFWbNq0iRtuuIHa2lo++eQTdu3aRWJiIn/4wx8ACAsLA2Dr1q106NBBzVCFEKJRSEKslXvwwQd55513GD9+PEePHkWn0zmH6ZeUlHDgwAGCg4NVjlII4aqMRiNLlixh2LBhTJkyBS8vLz744AMOHjzIxx9/zO23387gwYObNIaamhoWLVpEZmYmANHR0YwfPx5fX98mfV4hxLmdfmmp0WhUjEQIcTm+/fZbfvzxRxITE5kxYwYAI0eOxG6388c//pH/+7//IyUlRZJiQohWTxJirVjdcGkhhGgOpaWlBAQE1LvtqaeeYufOnaxZs4bt27czfPhw9u/fT3R0dLP/jCotLXW2bALEx8czduxYDAZDs8UghIBt27bh7u5Ojx49ZPGFEK3QyZMnWbRoEffccw8eHh7MnDmTRYsWceTIETw9PSkqKnK+4S6vR4QQrZkkxFq5xYsXYzAYcHd3x9PTE09PTwwGg7N1UqrDhBBX6sCBA6xatYrS0lKeeeYZPDw8nBe/lZWV+Pn5ceDAAbp27epst1BTTk4OCxcu5OTJk87W8VGjRskLcyGayX/+8x9MJhPPP/+8fN8J0cqlpaUxevRodu7cSWRkJBaLBZ1Ox8qVK4mIiKB79+5qhyiEEJdNhku1cn/+85+pqKjAbrdjsViwWq3Y7XYURcFqtWI2m3Fzc1M7TCFEK6MoChs2bGDr1q3U1tai0Wjo3LkzUL8FysfHh1deeQU3NzcURVE9GQanhv0/9thjpKens2TJErZv386uXbtISEhg0KBB8gJdiCaUmZlJdXU1vXr1ku81IVyARqOhY8eOlJWVERkZibu7OwABAQFs2LBBEmJCiFZNKsSEEEI4mUwmli5dyv79+7Hb7bi5udG7d2+GDx/uvAhubbZv387KlSuxWCwYDAZGjRpFz5491Q5LCJf0wQcfUFRUxDPPPCPtykK4iI8//phffvmFefPm4eXlddHji4uLKSoqomvXrs0QnRBCXD5JiAkhhKCoqIiUlBSOHz8OgLe3N4MGDaJ///4uUeWhKApr165l8+bN2O12fH19GTNmDDExMWqHJoTLOHnyJO+++y4dOnRg6tSpaocjhGhEVVVVVFdXs2fPHkaMGHHe48xmM/v27ePhhx9m2LBhvPrqq80YpRBCNIwkxFxQ3V+pDLgUQlxMRkYGy5cvp7i4GIDg4GBGjBhBbGysypE1DZvNRnJyMnv27MHhcBAcHMz48eMJDQ1VOzQhWr05c+bw22+/8dBDD8n3lBAuqLa2ln/+8588+uijtG/f/rzH2e125syZw5///Gc+/PBDxo8f34xRCiHEpZOEmAtKT0/H19eX8PBwtUMRQrRAiqKwdetWNm7cSE1NDRqNhquuuoqkpCTatWundnjNoqamhp9++omMjAwAoqOjGT9+PL6+vipHJkTrZLFYePXVVwkICOCxxx5TOxwhhIoOHTrEDz/8wLFjx5g1a9ZZG6qFEKKlkISYC/rnP//J1VdfzYQJE9QORQjRglgsFpYvX86ePXuw2WzodDp69OjBiBEj2uysn9LSUhYsWEBOTg4A8fHxjB07ts1+PYS4XCkpKWzfvp077riDbt26qR2OEEIl2dnZfPPNN6SlpfHiiy9y9dVXoyiKS4xfEEK4Htky6WIURQGQzZJCCKfS0lKSk5M5evQoDocDo9HI4MGDuf7669v8BWpAQADTpk0jJyeHRYsWcfjwYY4cOULfvn0ZNWpUm//6CHEpFEVh9+7deHp6SjJMiDbIbrej0+kwmUwsWbKEX3/9lUceeYSrr74ah8Mhv0uFEC2WJMRcjMlkAkCvl79aIdq648ePs3TpUgoKCgBo164dN910E/Hx8SpH1vJERkby6KOPkp6ezpIlS9i+fTu7du0iISGBQYMGycW8EBewY8cOrFYr119/vdqhCCFU8PXXX7Nx40YmTJjA+vXrGT16tHPw/rlmGjscDpl1LIRoESRr4mLMZjMgFWJCtGVpaWmsX7+eyspK4NR8rKSkJBlyfQni4uKIi4sjLS2NFStWsGbNGrZs2cLIkSPp1auX2uEJ0SJt2LABrVbLjTfeqHYoQggV3HnnnXz11VdMnDiRxx57jBkzZgBnJ77qKsnsdruzckyn06kVthBCSELM1UhCTIi2yWazsWrVKnbu3InFYkGr1XLNNdeQmJiI0WhUO7xWp1+/fvTp04e1a9eyefNmfv75Z9asWcOYMWOIiYlROzwhWozjx49TWVnJNddcI5WUQrRRRqORtWvX8uijj7Jw4UL+/Oc/4+vrWy8Z5nA40Ol05OXl8be//Q2z2UxOTg4ffPABXbt2VTF6IURbJgkxF2OxWABwd3dXORIhRHOoqKggJSWFjIwMFEXBYDBw4403MnjwYHlxeoW0Wi3Dhg3jxhtvJDk5mT179jBnzhyCg4MZP368VNwJASxbtgyAxMRElSMRQqjtvffec87jHDBggPN2m82GXq+npKSE6667jtGjR/PII4+wY8cOxowZw9q1a4mMjFQxciFEWyUJMRdTVyEmCTEhXFt2djapqank5uYC4O/vz7Bhw+jevbvKkbkevV7P2LFjufnmm/npp5/IyMjgo48+Ijo6mvHjx+Pr66t2iEKoory8nPz8fNq3by+VqEIIAG677TYAioqK+PXXX7n11luds43Hjx/PgAED+OCDDwDo06cPS5cupaysTBJiQghVSELMxUjLpBCubd++faxatYry8nIAIiIiSEpKkgvJZmA0Gpk0aRKlpaUsWLCAEydO8NZbbxEfH8/YsWMxGAxqhyhEs0pJSQEgKSlJ5UiEEC2NXq9n6dKlJCYmotfrefHFF8nPz2ft2rXOY5YvX8727dsJDw8HIDMzk9jYWJUiFkK0RZIQczHSMimE61EUhbVr17Jt2zbMZjNarZb4+HgSExOlOkkFAQEBTJs2jZycHGdryJEjR+jTpw+JiYnSqiraBJvNRkZGBv7+/s4Xs0IIUScgIID3338fgNraWo4dO8arr77qvP/YsWN89tlnPProowQGBrJr1y6eeeYZ3N3d+eabbwgICFArdCFEGyIJMRdjtVoB8PDwUDkSIcSVqqmpITU1lYMHD6IoCu7u7gwcOJBhw4Y52w+EeiIjI3n00UdJT09nyZIlpKWlsXv3bhISEhg0aJAkxoRLW716NQ6Hg2HDhqkdihCihfP09MRms1FWVgZAVVUVL774ImFhYUyYMIGysjI++eQTBg4cSHZ2NqNHj+b999+nd+/e6gYuhHB58orKxUiFmBCtX0FBAcnJyWRlZQHg4+PD4MGD6du3r8qRiXOJi4sjLi6OtLQ0Vq5cyZo1a9iyZQsjR46kV69eaocnRJPYsWMHHh4eMrdQCHFJxo0bx1/+8hdyc3OZP38+PXr04N5776VTp068++67bNmyhc8//5zevXvz/fff869//YtZs2YRFRWlduhCCBemcTgcDrWDEI1n9erVbNiwgT/+8Y+EhISoHY4QogEOHTrEypUrOXnyJABhYWGMHDmSjh07qhuYuGR17a2bN2/Gbrfj6+vLmDFjiImJUTs0IRrNrl27+OWXX7jhhhu46aab1A5HCNFKbN++nc2bN+Pp6cmMGTOct2dnZ/Pkk0+iKArz5s1Dq9VSVFREcHCwitEKIdoCSYi5mKVLl7J161aeeOIJmS0kRCugKAqbNm1iy5Yt1NbWotFoiImJYfTo0fj7+6sdnrhMNpuN5ORk9uzZg8PhIDg4mPHjxxMaGqp2aEJcsVmzZlFZWclzzz0n7dtCiMtWXFxMUFCQ888PPfQQ11xzDY8++qjzNofDgUajUSM8IUQbIFcxLqZuhpi0TArRsplMJpYtW8a+ffuw2+3o9Xr69evHzTffLN+/LkCv1zN27FhuvvlmfvrpJzIyMvjoo4+Ijo5m/Pjx8oaFaLWys7MpLy+na9eukgwTQly2PXv28OSTT/L11187N2V37dqV7du31ztOkmFCiKYkVzIuxmazAZIQE6KlKikpITk5mePHj+NwOPDy8mLQoEEMGDBAhrC7IKPRyKRJkygtLWXBggWcOHGCt956i/j4eMaOHYvBYFA7RCEaJDU1FYCkpCSVIxFCtGY9e/YkMTGR8ePH88orrxAZGclXX33F1KlT1Q5NCNGGSELMxdRViMkLayFalszMTJYtW0ZxcTEAQUFBjBgxgs6dO6scmWgOAQEBTJs2jZycHBYtWsThw4c5cuQIffr0ITExUX5mi1ahqqqK3NxcwsPD8fb2VjscIUQr9/TTT9O1a1deeOEFvLy8GDhwIPfdd5/aYQkh2hBJiLmYugoxIYT6FEVh27ZtbNy4kerqagA6duzI6NGj683MEG1HZGQkjz76KOnp6SxZsoS0tDR2795NQkICgwYNksSYaNHqqsMSExNVjkQI4SpGjx7NjTfeiE6nw2g01rvP4XA4x0oIIURTkJ8uLsZms0mvvRAqs1gsrFy5kt27d2O1WtHpdPTq1YuRI0dKi5wAIC4ujri4ONLS0li5ciVr1qxhy5YtjBw5kl69eqkdnhBnURSFw4cP4+vrS1RUlNrhCCFciI+Pz1m3ORwObDYbs2bNYujQofTr10+FyIQQrk4SYi5GKsSEUE95eTnJyclkZmbicDjw9PRk0KBBUvkjzqtfv3706dOHdevWsWnTJn7++WfWrFnDmDFjiImJUTs8IZzWrl2LoigMHjxY7VCEEG2ARqOhqqoKu91OcnIyubm5jBkzRu2whBAuRhJiLkYqxIRofidOnCA1NZX8/HwAAgMDGT58ON26dVM5MtEaaLVahg4dSkJCAikpKezevZs5c+YQHBzM+PHjCQ0NVTtEIdi+fTvu7u706dNH7VCEEG1EQEAATz75JLNnz2bXrl3k5eXxwAMPSAulEKLRaBwOh0PtIETj+fDDDzl58iR//etf1Q5FCJe3c+dO1q1bR0VFBQBRUVEkJiYSHh6ucmSiNautrWXRokVkZGQAp/5dTZgwAV9fX5UjE23Vvn37WLhwIddddx0jR45UOxwhRBujKArz58/n0KFDeHp6MmPGDPz9/dUOSwjhAiQh5mLee+89KioqeP7559UORQiXZLPZWLNmDWlpaVgsFrRaLV27dmXUqFGydU00qrKyMubPn09OTg4A8fHxjB07VubQiWb39ttvU15ezvPPPy+VGUII1WzatImVK1ei1WqZOHEisbGxaockhGjl5KrGxSiKIrOKhGgCVVVVpKSkkJ6ejqIoeHh4MGjQIIYOHSrfc6JJ+Pv7M23aNHJycli0aBGHDx/myJEj9OnTh8TERPl3J5pFXl4eZWVldOnSRZJhQghV3XDDDYSFhfHdd98xd+5chg0bRkJCgtphCSFaMakQczFvvfUWVquVv/zlL2qHIoRLyM3NJSUlxVml4+fnx9ChQ+nZs6fKkYm2Jj09nSVLllBVVYVerychIUEWNogm9/nnn5OVlcXjjz+On5+f2uEIIQTl5eXMnj2bmpoa4uLi+MMf/iC/C4UQl0USYi7mzTffxOFw8PTTT6sdihCt2v79+1m1ahVlZWUAhIeHk5iYSFRUlLqBiTYvLS2NlStXYjabMRgMjBw5kl69eqkdlnBBNTU1vPHGG4SFhfHggw+qHY4QQjjZbDa++OILcnNzCQwMZPr06TJSQAjRYJIQczGvv/46er2eJ598Uu1QhGh1FEVh3bp1bNu2DZPJhEajoUuXLiQlJclAc9Gi1P1b3bRpE3a7HV9fX8aMGUNMTIzaoQkXsnDhQvbt28eUKVPo2LGj2uEIIcRZFi9ezM6dO3F3d+f++++XzcxCiAaRYRAuRlEUdDqd2mEI0arU1NSwdOlSDh48iN1ux83NjWuvvZabbrpJZuaIFkmr1TJ06FASEhJISUlh9+7dzJkzh+DgYG6//XbCwsLUDlG0coqicPDgQby9vSUZJoRosW699VYiIyNZsmQJH3/8MbfffjvXXHON2mEJIVoJeaXnYhwOhyTEhLhEhYWFJCcnc+LECQB8fHxISEigb9++MotCtAp6vZ4xY8Zw8803s2jRIjIyMvj444+JiopiwoQJUtkoLtuGDRuw2+0ysFoI0eL16dOH0NBQvvrqKxYsWEBubi4jRoxQOywhRCsgLZMu5t///jcBAQE8/PDDaociRIuVnp7OihUrKCkpASAkJIRRo0Zx1VVXqRyZEFemrKyM+fPnO5dAxMfHM3bsWJmrIhrs9ddfx2az8eyzz8obBEKIVqGmpobZs2dTXl5Ohw4duPfee+XnlxDigqRCzMU4HA5p8RLiHBRFYcuWLWzevJmamho0Gg0xMTEkJSURGBiodnhCNAp/f3+mTZtGTk4OixYt4vDhwxw5coTevXuTlJQkLwzEJTl06BC1tbX069dP/s0IIVoNo9HIzJkzmTNnDseOHWPWrFnMmDEDb29vtUMTQrRQUiHmYl566SUiIiJ44IEH1A5FiBbBYrGwbNky9u7di81mQ6/X06NHD0aOHIm7u7va4QnRpNLT01myZAlVVVXo9XoSEhIYNGiQJDnEBb333nucPHmSZ599Vn5OCiFapVWrVrFx40b0ej2TJ08mOjpa7ZCEEC2QlBK5GKkQE+KUkydPkpyczLFjx3A4HBiNRoYOHcp1110nyQDRZsTFxREXF0daWhorV65kzZo1bNmyhZEjR9KrVy+1wxMtUGFhISUlJcTExEgyTAjRag0fPpzw8HAWLFjAF198QVJSEv3791c7LCFECyOZExcjCTHR1h09epRly5ZRWFgIQLt27bj55puJi4tTOTIh1NOvXz/69OnDunXr2LRpEz///DNr1qxhzJgxxMTEqB2eaEFSU1MBSEpKUjkSIYS4Mt26dSM4OJjPPvuMlJQUcnJyGDdunNphCSFaEMmcuCBJiIm2RlEUduzYwfr166mqqgKgQ4cOJCUlERISonJ0QrQMWq2WoUOHkpCQQEpKCrt372bOnDkEBQVx++23Ex4ernaIQmUmk4njx48THBwssxWFEC4hODiYJ598kk8++YQ9e/ZQUFDAAw88IK+XhBCAzBBzKQ6HgxdffJFrrrmG8ePHqx2OEE3OZrOxYsUKdu3ahdVqRafTcfXVVzNy5EiMRqPa4QnRoplMJhYuXEhGRgYAUVFRTJgwAV9fX5UjE2r5+eef2b17N3fffTexsbFqhyOEEI1GURQWLFjAwYMH8fT0ZPr06QQEBKgdlhBCZZIQcyFWq5WXX36Z3r17M2bMGLXDEaLJVFRUkJycTEZGBg6HA4PBwLXXXsuNN94o88GEaKCysjLmz59PTk4OAPHx8YwdOxaDwaByZKI5KYrCyy+/jMFg4Omnn1Y7HCGEaBKbNm1i5cqVaLVa7rrrLjp37qx2SEIIFUmtqAsxmUwAuLm5qRyJEE0jKyuL1NRU8vLyAAgICGDYsGFcc801KkcmROvl7+/PtGnTyM3NZeHChRw+fJgjR47Qu3dvkpKSJMncRmzZsgW73c7111+vdihCCNFkbrjhBiIiIpg7dy7ffvstQ4cO5cYbb1Q7LCGESqRCzIUUFxfz/vvvc8MNN3DTTTepHY4QjWb37t2sWbOGiooKACIjI0lKSiIiIkLlyIRwPenp6SxZsoSqqir0ej0JCQkMGjRIEmMu7o033sBisfDcc8/J37UQwuVVVFQwe/Zsqqur6dKlC3feeaf87BOiDZKEmAvJycnh008/lXc6hEuw2WysXbuWtLQ0zGYzWq2W+Ph4EhMT8fb2Vjs8IVzejh07WLFiBWazGYPBwMiRI+nVq5faYYkmkJGRwbfffisjF4QQbYrNZuPLL78kJyeHwMBApk+fLuMChGhjJCHmQo4dO8bXX3/NiBEjGDhwoNrhCHFZqqqqSE1N5fDhwyiKgoeHB3379mXo0KGyEUiIZqYoCuvWrWPTpk3Y7XZ8fHwYM2aMDFx3Me+//z4lJSX85S9/kReDQog2Jzk5mbS0NNzd3bn//vsJDQ1VOyQhRDORV5cuxGKxAODu7q5yJEI0XF5eHikpKWRnZwPg6+vLkCFD6N27t8qRCdF2abVahg4dSkJCAikpKezevZu5c+cSFBTE7bffTnh4uNohiitUUlJCcXExHTt2lGSYEKJNGj16NBERESxevJiPP/6Y2267je7du6sdlhCiGUhCzIWYzWZAEmKidTlw4ACrVq2itLQUgLCwMBITE4mOjlY5MiFEHb1ez5gxYxgxYgQLFy4kIyOD2bNnExUVxYQJE/D19VU7RHGZUlJSAEhMTFQ5EiGEUE/v3r0JDQ3lyy+/ZOHCheTk5DBq1Ci1wxJCNDFJiLkQqRATrYWiKGzYsIGtW7dSW1uLRqOhc+fOjB49Gj8/P7XDE0Kch8FgYNKkSZSVlbFgwQKysrJ46623iIuLY9y4cVJh1MpYLBaOHTtGu3btCAkJUTscIYRQVUREBI8//jizZ89m69at5OXlMWXKFBm2L4QLkxliLmTz5s2sWLGCKVOm0LFjR7XDEeIsJpOJpUuXsn//fux2O25ubvTu3Zvhw4dLIleIVig3N5eFCxdSUlKCRqOhT58+JCUlyYuHVqJubs6dd95JfHy82uEIIUSLoCgK3377Lb/99hve3t48+OCDstBJCBclCTEXsnbtWtatW8f06dOJiIhQOxwhnIqKikhJSeH48eMAeHt7M2jQIPr37y8vnIVwAUeOHGHx4sVUVVWh1+sZNGgQCQkJ8v3dgimKwiuvvIKbmxt/+ctf1A5HCCFanNWrV7Nhwwb0ej2TJ0+WcR5CuCBJiLmQFStWsHnzZh599FHatWundjhCkJGRwfLlyykuLgYgODiYESNGyIY6IVzUjh07WLFiBWazGYPBwIgRI2QxRgu1detWli5dytChQ7nxxhvVDkcIIVqkw4cP8+OPP6IoComJiQwYMEDtkIQQjUgSYi4kNTWVbdu28dRTT0lZr1CNoihs3bqVjRs3UlNTg0aj4aqrriIpKUkStUK0AYqisG7dOjZt2oTdbsfHx4cxY8ZIIryFefPNN6mtreX555+XSj4hhLiAkpISPv30U0wmEz169OC2225TOyQhRCORofouxGq1AshQY6EKi8XC8uXL2bNnDzabDZ1OR+/evRkxYoT8mxSiDdFqtQwdOpSEhARSUlLYvXs3c+fOJSgoiNtvv53w8HC1Q2zzjh07RlVVFd27d5dkmBBCXES7du144okn+PTTT9m7dy/5+flMnz4dvV5eSgvR2kmFmAtZsGAB+/fv5+9//7vaoYg2pLS0lOTkZI4ePYrD4cBoNDJw4ECuv/56eaElhMBkMrFo0SKOHDkCQFRUFOPHj5eNsir66KOPKCgo4M9//jNGo1HtcIQQotWYP38+Bw4cwGAwMH36dAIDA9UOSQhxBSSt7ULqKsSEaA7Hjx9n6dKlFBQUABAYGMhNN91E165dVY5MCNGSGAwGJk6cSFlZGQsWLCArK4tZs2YRFxfHuHHjpIK0mZWXl1NQUEBUVJQkw4QQooEmTJhAZGQky5cv5/333+cPf/gDcXFxaoclhLhMUiHmQubMmcNvv/0mFWKiSaWlpbF+/XoqKysBiI6OJikpidDQUJUjE0K0Brm5uSxcuJCSkhI0Gg19+vQhMTERnU6ndmhtwrfffktGRgYzZsyQ9lUhhLhMx48fZ86cOdjtdgYPHsyQIUPUDkkIcRmkQsyF2O12NBqN2mEIF2Sz2Vi1ahU7d+7EYrGg1Wq55pprSExMlAoDIUSDRERE8Oijj5KRkcHixYvZsWMHe/bsYdCgQSQkJEirdROy2WxkZmYSEBAgyTAhhLgCHTt2ZObMmcyePZt169aRk5PDxIkT5XeYEK2MVIi5kM8++4zc3FxeeOEFtUMRLqKiooKUlBQyMjJQFAWDwcCAAQMYPHiw/MIXQjSKHTt2sGLFCsxmMwaDgREjRtC7d2+1w3JJS5cuZevWrYwfP55rrrlG7XCEEKLVUxSFL774guzsbPz9/XnwwQdlFIAQrYgkxFzIxx9/TFFREX/729/UDkW0ctnZ2aSmppKbmwuAv78/w4YNo3v37ipHJoRwRYqisG7dOjZt2oTdbsfHx4cxY8YQGxurdmgu5ZVXXkGr1fLMM8+oHYoQQriUlJQUtm/fjpubG/fdd59U4QrRSkjLpAuRlklxpfbu3cvq1aspLy8HTrU2JSUlERkZqXJkQghXptVqGTp0KAkJCaSmprJr1y7mzp1LUFAQt99+u7ywuEwOhwOHw4FWq3W2vCckJKgdlhBCuJykpCQiIiL45Zdf+OSTTxg7diw9e/ZUOywhxEVIhZgLeffdd6mqquK5555TOxTRiiiKwtq1a9m2bRtmsxmtVkuXLl1ITEzE19dX7fCEEG2QyWRi0aJFHDlyBICoqCjGjx+Pn5+fypG1LqmpqezZs4d+/fqxZ88eampq+Otf/yot70II0UTy8vL44osvsFqtDBgwgMTERLVDEkJcgCTEXMisWbMwm83SCiEuSU1NDampqRw8eBBFUXB3d6dv374MGzYMvV6KR4UQ6isrK2PBggVkZ2cDEBcXx7hx42Q+yyX66aef2LNnDxqNBofDga+vL3feeScRERFqhyaEEC6rtraW2bNnU1ZWRvv27bnvvvvkjQghWihJiLmQ//73v9hsNv7yl7+oHYpowQoKCkhOTiYrKwsAHx8fBg8eTN++fVWOTAghzi03N5eFCxdSUlKCRqOhd+/eJCYmSvL+IpKTk9m5cyeKogA4E2PXXXcdI0eOVDk6IYRwXYqi8N1335GZmYm3tzfTp0+XzgshWiC5knQhdrsdnU6ndhiihTp06BArV67k5MmTAISGhjJq1Cg6duyobmBCCHERERERPProo2RkZLB48WJ27tzJ3r17GTRoEAkJCfLO+3l4eHicdZtGo5GZbEII0cS0Wi133303a9asYf369bzzzjvcc889ct0tRAsjFWIu5PXXX8fNzY0nnnhC7VBEC6EoCps2bWLLli3U1tai0WiIiYlh9OjR+Pv7qx2eEEJclp07d7J8+XLMZjMGg4ERI0bQu3dvtcNqcdavX8+aNWuAU4kwd3d37rzzTq666iqVIxNCiLYjPT2defPmoSgKI0eO5LrrrlM7JCHE/0hCzIW8+uqrGI1GZs6cqXYoQmUmk4lly5axb98+7HY7er2eXr16cfPNN+Pu7q52eEIIccUURWH9+vVs3LgRu92Oj48PY8aMITY2Vu3QGo3d4aDcrGBVHNgcDuwO0GlAr9HgptXg56FFd4Ht0ps3b2bFihUABAYGcvfddxMYGNhc4QshhPifkpISPv30U0wmE9dccw3jx49XOyQhBJIQcykvv/wyfn5+PPLII2qHIlRSUlJCcnIyx48fx+Fw4OXlxaBBgxgwYIC0FAkhXJLNZiM1NZVdu3bhcDgICgri9ttvb3VtgXaHg+JaO/m1NgpqbORWWyky2bFf4CpNp4Fgg44ILzdCjXrCPPUEeeqcSbIffviBw4cPExISwv3333/OFkohhBDNw2Kx8Nlnn1FYWEhwcDDTpk2TN6qFUJkkxFzIv/71L4KCgnjooYfUDkU0s8zMTJYtW0ZxcTEAQUFBjBgxgs6dO6scmRBCNA+TycSiRYs4cuQIAFFRUYwfPx4/Pz+VI7uwvGorO4pNHCo1O5NfWkBpwDlOP16nga4BHvQNNpD87VeUl5fzxBNPyJsiQgjRQixcuJB9+/ZhMBiYNm0a7dq1UzskIdosSYi5kJdeeomwsDCmT5+udiiiGSiKwrZt29i4cSPV1dUAdOzYkdGjRxMUFKRydEIIoY6ysjIWLFhAdnY2AHFxcYwbNw6DwaByZP+fVXFwqNRMWlEthbV2NEBjXozVnc/NVEHvADcSurTHTXv+1kohhBDN69dff2XZsmVotVruuOMO4uPj1Q5JiDZJEmIu5MUXXyQqKor77rtP7VBEE7JYLKxcuZLdu3djtVrR6XR0796dkSNHtqgXfEIIoaa8vDwWLlxIcXExGo2G3r17k5iYiF6v3oJtq+JgS34NaUUmLIqj0RNhZ6o7v7tWQ79gAwPDjJIYE0KIFuL48ePMmTMHu93OjTfeyNChQ9UOSYg2RxJiLuSf//wnV111Fffee6/aoYgmUF5eTnJyMpmZmTgcDjw9PbnuuusYNGiQtMIIIcR5ZGRksHjxYiorK9Hr9QwaNIiEhIRm/7mZU21l8fFKyi1KkybBzkcD+LlrubWjD5FebipEIIQQ4kwVFRV88sknVFVVERMTw6RJk+S6XohmJAkxF/LPf/6Tzp07M2nSJLVDEY3oxIkTpKamkp+fD5zaFDZ8+HC6deumcmRCCNF67Ny5k+XLl2M2m/Hw8GDkyJH07t27yZ/XqjjYkFfDtsLaJq8Iu5i65x8Q4klCuFSLCSFES6AoCl9++SVZWVn4+/szY8YMPD091Q5LiDZBEmIu5J///CfdunXjjjvuUDsU0Qh27tzJunXrqKioAE4NiE5MTGx1m9OEEKKlUBSF9evXs3HjRux2Oz4+Ptx6661NtoBE7aqwC/GXajEhhGhRUlNT2bZtG25ubtx3331yzS9EM5CEmItQFIWXXnqJHj16cNttt6kdjrhMNpuNNWvWkJaWhsViQavV0rVrV0aNGoW3t7fa4QkhhEuw2Wykpqaya9cuHA4HQUFB3H777Y364uNwqZmfj1cC6laFnU9dbdjYjj7EB3ioGosQQohT9uzZw88//wzAmDFj6NWrl7oBCeHiJCHmIkwmE6+99hp9+/bllltuUTsc0UBVVVWkpKSQnp6Ooih4eHjQv39/hgwZgk6nUzs8IYRwSSaTiUWLFnHkyBHgVCXu+PHj8fPzu6Lz7ikxkXqiqjFCbBaJ0d70bCdLWYQQoiXIy8vjiy++wGq10r9/f5KSktQOSQiXJQkxF1FWVsbbb7/Nddddx8iRI9UOR1yi3NxcUlJSyMnJAcDPz4+hQ4fSs2dPlSMTQoi2o6ysjAULFpCdnQ1AXFwc48aNq7e5d9euXQQHB9O+ffsLnqu1JcPqSFJMCCFaDpPJxOzZsyktLSUyMpL7779fhu0L0QQkIeYiCgoK+Oijj0hISGDYsGFqhyMuYv/+/axatYqysjIAwsPDSUxMJCoqSt3AhBCiDcvLy2PhwoUUFxej0Wjo3bs3iYmJlJSU8NFHH2EwGHjkkUfO28J+uNTMT/9rk2yNxkn7pBBCtBiKovD999+TkZGBl5cXM2bMwNfXV+2whHApkhBzEVlZWXz++ecMGzaMhIQEtcMR56AoCuvWrWPbtm2YTCY0Gg1dunQhKSlJfrkJIUQLkpGRweLFi6msrESv1+Pj4+N8AyMmJoZJkyah0dTf0JhTbWXOkfIWOS/sUmmAe7r4yaB9IYRoQdauXcu6devQ6XTcc889dOzYUe2QhHAZkhBzEZmZmcydO5dRo0Zx7bXXqh2OOE1NTQ1Lly7l4MGD2O123Nzc6NOnDzfddBN6vV7t8IQQQpzHzp07Wbp0KVartd7to0ePpl+/fs4/WxUHnx0qbZHbJBtCA/i5a3mgawBuWs1FjxdCCNE80tPTmTdvHoqiMGLECAYOHKh2SEK4BHk17iIsFgsA7u7uKkci6hQWFpKcnMyJEycA8PHxISEhgb59+8oMACGEaAV69+7N9u3byc/Pr3d7amoqHTt2JCgoCIANeTWtPhkGp7ZhllkUNubVMDTSS+1whBBC/E9cXByPPvoon3zyCcuXLycnJ4cJEyaoHZYQrZ4kxFyE2WwGJCHWEqSnp7NixQpKSkoACAkJYdSoUVx11VUqRyaEEKIhMjMzz0qGwakW+I8++ojHHnuMKr2RbYW1KkTXdLYW1tLF311aJ4UQogUJCAjgySef5NNPP+XAgQMUFBQwffp0ef0nxBWQlkkXsW3bNlJTU5k0aRKdO3dWO5w2R1EUtmzZwubNm6mpqUGj0dCpUyeSkpIIDAxUOzwhhBCXobCwkPXr12OxWLDZbFitViwWC6WlpVitVrR6NwJumUa1om311WGnk9ZJIYRo2RYtWsTevXvx8PBg2rRpzoplIUTDSELMRWzcuJFVq1Zx3333ER0drXY4bYbFYmHZsmXs3bsXm82GXq+nR48ejBw5Ut6tEUIIF2YymVi473dO6NupHUqTuT7UkxsjpHVSCCFaorqCCK1Wy4QJE+jatavaIQnR6kjLpIuoG/jr4SHr0pvDyZMnSU5O5tixYzgcDoxGI0OHDuW6666T+WBCCNEG6Nw9yHcPAsV131fcUWRiYJhRqsSEEKIFGjBgAGFhYXzzzTfMmzePQYMGMXz4cLXDEqJVkYSYi5CEWPM4evQoy5Yto7CwEIB27dpx8803ExcXp3JkQgghmtOhUjMWF06GAZgVB4dLzXRvZ1A7FCGEEOcQHR3Nn/70Jz7++GM2btxIbm4ud999t7xBL8QlkoSYi5Atk01HURR27NjB+vXrqaqqAqBDhw4kJSUREhKicnRCCCHUkFZUiwZcanbYmTSc+jwlISaEEC2Xt7c3TzzxBF999RVHjx7lnXfeYcaMGRiNRrVDE6LFk4SYi6irEDMY5KK1sdhsNlasWMGuXbuwWq3odDrnfDD5BSOEEG1XXrWVwlq72mE0OQdQUGsnr9pKuGycFEKIFkur1XLfffexbNkyfv31V2bNmsXUqVOJiIhQOzQhWjQZqt+KmUwmvvnmGywWC5WVlZjNZq666irnYPdrrrlG7RBbpYqKCpKTk8nIyMDhcGAwGLj22mu58cYbpfxYCCEES36v5MBJs0tXh9XRAlcHejC6g4/aoQghhLgE+/btY9GiRQDceuut9O7dW+WIhGi5pEKsFdNqtZSUlGA2m523HTt2DICgoCBJiDVQVlYWqamp5OXlARAQEMCwYcPk6yiEEMLJ7nBwqLRtJMMAFOBgqZnEaG+0GhmuL4QQLV337t0JCQnh888/55dffiEnJ4dbbrlF7bCEaJEkIdaKubu7M2DAADZu3MjphX56vZ4bbrhBxchal927d7NmzRoqKioAiIyMJCkpSUqMhRBCnKW41o69rWTD/sfugGKTnRBPuWwUQojWIDQ0lCeeeIJPPvmEHTt2kJeXx3333YdeLz/HhTid9H+1ctdee229Nj6NRsMNN9yAl5eXilG1fDabjZUrV/Lqq6/y888/U1VVRbdu3XjqqaeYNm2aJMOEEELUM3XqVDQaDb3jYxr1vKW5J3iuTzDP9QnmaNqm8x53NG2T87jS3BONGsOlyK+xXfSYtWvXotFo0Gg0rF27tumDEkIIcV4Gg4FHHnmEuLg4cnNzeeutt5wFAEKIUyQh1sp5eXnV6ws3GAwMHDhQxYhatqqqKn788UdeeeUVNm069cLj+uuv57nnnuOOO+7A29tb5QiFEEKo4aGHHiI0NBRFUS54nOJoexdPWi4tISaEEKJl0Wq13HXXXQwdOpSamhreeecdjh49qnZYQrQYUjPpAgYOHEhaWhoAQ4YMwcPDQ+WIWp68vDxSUlLIzs4GwNfXlyFDhsiQSSGEEDgcDhYvXsytt9560eUpNsXBhVNmrkcBcqutzj9bLBbc3d3VC0gIIUSD3HjjjYSHh/P999/zzTffcNNNN8mIHSGQhJhLCAwMxGAwYDKZ6Nu3r9rhtCgHDhxg1apVlJaWAhAWFkZiYiLR0dEqRyaEEKKl2L59O7m5uYwbNw4As9nMzJkz+e6775wtJ3WzOpXT5oet//p9dqf8SFl+DuaaKjx9/OnY61pGznyB4A6nWivNNVWkzvonhzcsp+pkMe6eRoI6xHLthCn0vfWuenGUF+bxzZP3kvHrOrwDgxg67Qn6j7vnrHgLjqYz74VHyD6wC9+QcEbNfIHuN41x3p+feYiVH77G0Z2bsVRX4RcWSY+bxzJs+lO4GTwB2LlkHlt++JSTOb9jqqrA3dOLqKt7c/PDzxF1TR/gVJvmJzNOfU3uef1TPrj3Y3bv3s3s2bOZOnUq8+bN49lnnyUvL4+hQ4dy9913N8rfhxBCiMbXuXNnHn30UT755BNWrlxJbm4u48ePv+gbQUK4MkmItVJ2h4Nys4JVcWBzOIi8pi8VZaUUmx24ae34eWjRtdFtUIqisGHDBrZu3UptbS0ajYbOnTszevRo/Pz81A5PCCFEC/PTTz/h5eXFTTfdBMDzzz/P7NmzAQgODmbWrFlYracqpE6fp380bRMlWcfwD2uPb0g4RceOcGBNMtmHdvPUol9x8zCw4sPX2Dr/S/TuHoTGxFFbWUHOwV0cTYs5KyG26F9P4h0YjFavozT3BIv+9RQdel5LyFWd6x333TPT8A0JR+fuzsns43z37HTazelIRHwPCo8e4cOpiVhqqnE3etEu6iqKjmew9ou3yT60hwc++BGArP07yM88hH9YJH4h4RQdzyTj17Wc2JfGU4t+xScotP5z/vVhgtoFEhMTg0ajYffu3UycOBFFUfDz8+PIkSM8+OCDjfnXIoQQopEFBATw5JNP8tlnn3Hw4EEKCwuZPn26VP2KNksSYq2A3eGguNZOfq2NghobudVWikxnbLmK6AUR8EV6GQA6DQQbdER4uRFq1BPmqSfIU+fSSTKTycTSpUvZv38/drsdNzc3BgwYwPDhw+WHvBBCiPP6+eefGTlyJAaDga1bt/Lee+8BcNddd/Hdd99RVFREfHw81dXV9R6X+Kf/Iyg6Bp2bGwCZW9fx2R8nUJ6fw++7txF77Y2UnDg1q2Xw1Jnc9NBfAKgpL6W8IOesOOJuGM6k1z8nP+Mg79w1BIeicGzHprMSYgPvmsaox16gsriA/46/AVNlOeu+fJeJr37C2i/fdibDnpi/Cf+wSDbO/YjkN18g89e1/LZ9IzH9B3H9XdNJ/NPfcfc0AlB84ihvjrsWc3UVhzeuOKsy7eqhSaTO/54IHw/sdjtTp051JsPS09MJDQ3l3nvv5ZtvvmmEvxEhhBBNRa/X8+CDD/Lzzz+ze/du/vvf//LAAw8QHBysdmhCNDtJiLVgedVWdhSbOFRqdia/tHBJs0vsDsivtVNYa3cer9NA1wAP+gYbCDe6NVHUza+oqIiUlBSOHz8OgLe3N4MGDaJ///5SAiyEEOKCMjMzOXjwIM8++ywAixcvxmKxANCxY0eKi4sJDg5myJAhLFy4sN5jy/KzWfTvp8jPOIilptrZVglQUZQPQNcbR3J4w3JWzX6DHb98R3DHWKJ7DuDa8feeFUuvpDvQaDSEdIpz3lZZUnTWcT1H3g6AT1AoMf0GcWBNMvmZhwDIObD7VOy9r8M/LPLUeRPHk/zmC6fuP7ibmP6DMFVV8Mtrz5JzaA+myvIzYi846zmvnzgD/vc7VafTceDAAQBuuOEGQkNPVZPdcccdkhATQohWYuzYsURERJCSksKHH37IhAkT6Natm9phCdGsJCHWwlgVB4dKzaQV1VJYa0dD/faMhg7yPf14uwMOnDSz/6SZUE8dfYM96RrggZu2dVaNZWRksHz5coqLi4FTbS0jRowgNjZW5ciEEEK0Fj/99BN6vZ7Ro0cD1KsoPnr0KO+//z7h4eEUFdVPTJ3MPs43T07BbrXg4eVNRNeeKHYbeen7AXAodgAGjL+X4I6xHFq/jPyMg+Qc3kvGr2vZv/IXHv9xQ71zevqcauvX6U+7PHM4OJPmEqq9L3SMuaaKzx/5A6bKcvQeBsLjuqPTu5G1f8epp7Tbz3qMT1AIttNCqUugnf48jnPEKoQQouXq378/YWFhfP311/z444/ccMMNzvEBQrQFkhBrIayKgy35NaQVmbAoDuouLxv70rLufIW1dlJOVLEyu5p+wQYGhhlbRWJMURS2bt3Kxo0bqampQaPR0KlTJ5KSkmjXrp3a4QkhhGghTCYTFRUVVFZWUlVVRVVVFTU1NdTU1GAymaitrcVisfDhhx/SsWNHPv30U2w2G2azGZ1Oh91u59ChQ3Tr1o3MzEznNuc6uen7sFtPVZLd9948OvTsz55li/j+uRn1jsvav5OQmHiu6ns9AMd2bmH2tDEU/HaY6rKTl/W57V66gFGdu1F1soijOzYBEBbbFYDIq3tReOwIx3ZuoSw/B/+wSHanLnA+NrJbL4qP/4apshyA8X9/m16jbufE3jQ+nJp43ufUaDToT7tM6NatG7t372bt2rW8/fbbzJw5kwULFpz38UIIIVqmqKgo/vSnPzF79mw2bdpEbm4u99xzj3TaiDZBEmItQE61lcXHKym3KM6EVVO/x1p3foviYEtBLQdLzdza0YdIr5bZSmmxWFi+fDl79uzBZrOh0+no3bs3I0aMwGAwqB2eEEKIRqIoCrW1tVRUVFBVVUVlZSU1NTVUV1dTW1tLbW0tJpMJi8Xi/M9ms2G327Hb7SjKpdVSazQaamtrOXbsGLfeeit6vR6j0Yher6d///78+uuv7Nu3j+zsbEwmEzabrd7jQzrFo9XpUOx2vnjsTvzD2lNVXHjW82z+7hP2rvgJv5AIPH39Kck+BoBvSDhGvwAsNVUN/hpt+f5TDqxOpqqkCFNVBRqtlhunPArAkKl/4sDqZCw11bw14Qb8QyMpOp4BQOy1g4npP4jaijLcPY1YamtY+OLjrPv8bapKz27NPJMWB0ePHmXfvn0EBgYCUF1dzbPPPst7771HVlZWgz8XIYQQ6vP29ubxxx/n66+/5tixY7z99ts8+OCDGI1GtUMToklJQkxFVsXBhrwathXWntUa2ZwcQLlF4Zsj5QwI8SQhvOVUi5WWlpKcnMzRo0dxOBwYjUYGDx7M9ddfL+9aCCFEC6MoijOJVVeZVV1dTU1NjTOZZTabMZvNzkSW1Wp1JrIakszSarXodDr0ej3u7u7O/zw8PPD09MRgMGA0GvHy8sLLywsfHx/nf3VtkZ9//jkOh4N33nmHDh06ALB06VIqKyuxWCzOJS2PPPIIBQUF9eZjhVzVmfF/f5uVH79BZXEBXv6B3PLUS3z2xwn1Yo1LuJnK4gIKj6VTkHkIT19/rkoYyIhHnr+k1sdzmfjap6z74h3K8rIJbN+RkY/+lciuPU/F1akLf/wylRUfvsqxnVsozjqKf0Q0PUeMY9j0pwDw9PVn0uufkfLWPziZfRydmxv3zprLB5NHXPB5Z3/4AY7qU5VlQUFBjB8/nlWrVlFVVUWHDh14/vnnuf/++y/rcxJCCKEurVbL1KlTWb58OVu2bGHWrFnce++9tG/fXu3QhGgyGocMfFDFuarCWgp/d63q1WLHjx9n6dKlFBScGuwbGBjITTfdRNeuXVWLSQghXJnNZquXyDpfMquuKqsukVX336VeTmg0GnQ6nfM/Nzc3ZzLLYDBgMBjw9PR0JrO8vb3x9vbG19cXb29v9PrGey9v7NixnDhxgl27djlv27hxI6tWraJbt26MGDECPz8/5312h4M395SgtLRf3M1A43DAqi8x1dSc9xidTofBYMDb2xt/f3+Cg4MJDw+nffv2+Pr6NmO0QgghrsT+/fudi2RGjx5N3759VY5IiKYhCTEVHC418/PxSkC9qrALqXu/emxHH+IDPJr1udPS0li/fj2Vlae+PtHR0SQlJTk3WAkhhDib1Wp1zsuqrKykurq6XjLLZDLVS2bZbDZnm6GiKJeczNJqtc7KLDc3N2d1loeHh7My68xkVl1Vlre3d4ur7H399dfp3r07iYn/f3aWxWKhsrLyvHMpvzxcSn7t2UPnXV2Yp44pcf7s27ePlJQULBYLDocDjUZDWFgYPj4+lJWVUVVVhdlsxn6Owfxubm54enri4+NDYGAgoaGhREREEBkZWW+ZgRBCCPUVFhby2WefYbFY6N27N2PGjFE7JCEanSTEmtmeEhOpJxo+L0QtidHe9GzXtDO6bDYbq1atYufOnVgsFrRaLd26dSMxMVH61oUQLu9Cw9/PNy+rLpnlcDgalMyqq8o6s83w9Kqsuv/qklh+fn4YDIYWl8xSy/KsKnYXmxq89bk10wK9ggyMiPIGoLKykl9++YXMzEwARo4cyXXXXVfvMYqiUFhYSHZ2NgUFBZSUlFBeXk5NTQ1ms/msf7cajQYPDw+MRiN+fn60a9eOsLAw2rdvT3BwsPz7E0IIFZhMJj755BNOnjxJeHg4999/f6NWaguhNkmINaPWlgyr01RJsYqKClJSUsjIyEBRFAwGAwMGDGDw4MFy4SuEaPHONfy9riqrLpl1elXWlQx/r6vM0uv19ZJZHh4ezmRWXUKrrsXQx8cHX19fWTzSyFrr7/IrlRTtTY/TrgUcDgd79uxhzZo13HnnnURERDTofBaLhezsbHJzcyksLOTkyZNUVlZSW1uL1Wo963idToeHhwfe3t4EBARIO6YQQjQTRVH48ccfOXz4MEajkRkzZtQbJyBEayYJsWZyuNTMT/9rk2yNxjVi+2R2djapqank5uYC4O/vz7Bhw+jevXujnF8IcTa73U51dbWzGqjOgQMH2LhxI7m5uYSGhnLXXXc5t8e5sgsNf6+pqcFkMtWrzGqs4e9nJrPqhr97eXk52wzPNfxdtBwFNTa+SC9TO4xmd3+8PyGezVcVUFFR4UyYFRcXU1pa2qB2zJCQECIjI6UdUwghGsmGDRtYvXo1Op2OiRMnEhMTo3ZIQlwxSYg1g5xqK3OOlLfIeWGXSgPc08Xvigbt7927l9WrV1NefmpDVUREBElJSURGRjZSlEK0DXa7nYMHD/Lrr78Cp9qVoqOj6x1TN9vnl19+4aWXXsJkMqHRaBg3bhyPPPIIoaGhHD9+nDfffJPS0lK6devG9u3b6d27N8888wweHs07P7AhLnf4u81ma9C8rNOHv5+ZzKob/m40GvH09Gzy4e+i5bA7HPx3Twn21vxLvYF0GniqZzu0l7kVs7EpikJRURHZ2dnk5+c3qB3T19eXoKAgQkNDiYqKknZMIYRogMzMTL777jsURWH48OEMGjRI7ZCEuCKSEGtiVsXBZ4dKW+Q2yYbQAH7uWh7oGoCb9uwLYofDwapVq+jUqROdOnVy3q4oCmvXrmXbtm2YzWa0Wi1dunQhMTFRWhxEm2Cz2TCbzXh5eZGdnU1NTQ1dunQB4Ndff2XBggXExMTQqVMnoqKi6Nq1K4qiXPAFWkVFBbNnz+b777+nrKyMf/3rX9x11131HleXENu5cydWq5Vrr70Wi8XCpEmT6NChA2+++SbvvfceycnJ/Pjjj3h7e/PBBx/w008/sWDBAnx8fJrk62GxWOrNyzrX8Pe6yiyr1drkw9+9vLyc/7Xk4e+iZVnyeyUHTppb9e/1S6UFrg70YHSHpvmZ0BQsFgs5OTnk5uZSUFDQ4HbMoKAgwsPDiYqKkmsVIYQ4Q1lZGZ988gk1NTXEx8dzxx13yHWTaLUkIdbEVudUs72w1mUumq8N8WRopNdZt69evZoNGzYQGBjIo48+Sm1tLampqRw8eBBFUXB3d6dv374MGzZMqiZEm/LQQw9RXFzM/Pnz+e6776ioqODBBx/EYrHwt7/9jYKCAmbNmsV//vMf7HY7r7766kXPWVf9dPLkSd555x26du3KtGnTzplIq0uM1f3/qaeeoqCggDlz5pCWlsann36KRqMhICCAgwcPcvfdd3PHHXc4jz9d3fD3iooKqqurzzn8vS62M5NZTTX8/fTKLBn+LppLXrWVr46Uqx1Gs5kS50e48fIrxFuaunbMvLw8ioqKnNsxTSbTJbdjRkRE0L59e2nHFEK0STabjc8//5y8vDzatWvHjBkz5OehaJUkM9GEcqqtbCusVTuMRrW1sJYu/u71WicPHDjAhg0bADh58iQffPABxcXFAPj4+DB48GD69u2rSrxCqC0sLIz8/HwARo8eTXV1NYqi8PXXX7NixQr69+/PL7/8wsaNGzl48CA7d+4kISGBF1544bznrKtyqqqqora2lurq6vMee3oybPfu3aSnpzN58mQA+vbty+7du/n222/p27cvBoOBXbt2cdttt9VLXFutVl5++eWLfq5nDn93c3PDaDSec/h7XVWWDH8XrVG4lxshnjqKau0u84bXuWiAEE+dSyXDAHx9fenWrRvdunU7677T2zELCgooLi52tmPm5uaSk5NT73iNRoO7uzteXl712jEjIyMJDQ2VBL0QwiXp9XpmzJjBL7/8wq5du/jvf//LAw88QHBwsNqhCdEgkhBrIlbFweLjlWjApS6WNcDi45XO1sm8vDwWLVpU75ji4mJCQ0MZNWoUHTt2VCVOIVqKdu3aUVhYCMCcOXP47LPPWLZsGSUlJZhMJk6ePOl8cVZcXMxbb72Fn58f5eXlfPjhhxiNRmbOnHnO6i+dToenp+cFE2Jw6gVbWVkZb7/9NpGRkdx5550AbNu2jSVLljBv3jyCgoI4cOAAzz//PEuXLuWWW26p9zzdunWT4e9CnKZfsCcpLr5t0sGpz7Mt0Wq1hIaGEhoaes77LRaLMzFWUFBAaWmpsw385MmTHD9+vN7xp7dj+vv7O7djSjumEMIVjBkzhoiICFJSUvjwww8ZP348V199tdphCXHJJCHWRLbk17T6uWHn4gDKLApb8mvo5W3nyy+/PGd7wbhx4wgLC2v+AIVoYYKCgpyLJKKiovD09CQoKIgZM2ZQUFDAtddey2233YabmxsbN250XkQ4HA4ef/xx53D7c1UZaLVa3N3dqaiocD6mzuktjxaLhVdffZXy8nIWLlzoPKaqqoq0tDSCgoIACAwMpLb27KpWrVbLHXfc0RhfDiFcRtcAD1ZmV2NRXO03/f/nodU02oZpV+Hu7k7Hjh3P+4ZfZWUlWVlZZ7VjlpSUUFhYyJEjR+odf3o7ZkBAAKGhodKOKYRoVfr160dYWBhfffUV8+fPJzc3l5tvvlntsIS4JJIQawJWxUFakcnlkmGn21ZQzbovPkWxnRpOq9FonK1ZDoeDrVu3MnbsWJWjFOLynTn8vW4AfN0Ww3MNf588eTKhoaH1Zm8FBgZSVXWqisTX15eqqiqsViu1tbXU1NQ42ynd3NwoKytzPnfdvKwLqWvNqXucTqdz3lcXg91u591332X9+vWsWLGCrKwsLBYLMTExdO3alUGDBvHQQw8RHx/P3r17iYiIYMSIEY31ZRTCZblpNfQLNrClwHXmhJ6pb7DhnIt0xPn5+PhctB0zJyeH/Px8iouLnTMZ8/LyyMnJYf/+/c7jz2zHbNeuHaGhobRv317aMYUQLUr79u15/PHHmT17Nps3byY3N5fJkyfLzynR4klCrAkcKjW79DvGADa0+MX1pp35JKGhoVitVud/FouFiIgItUMUbZjJZKK8vLzeJsOmHv7u5uZ2zmrJwMBAampqAAgICMBms2GxWDAajXh6emKz2YBTya266qxLqQooKSlh7ty5LF68mGPHjmG1WklMTGTQoEGsXr2aefPm8dFHH5GVlcWf//xnunTpwpAhQ1AUhY4dO/Ljjz8SERHBG2+8wYcffkhxcTE9e/bklltukaoEIS7RwDAjB0vNLlcRrgH8PbRcH2ZUOxSX0pB2zMLCQud2zEttxwwKCiIiIkLaMYUQqvDy8uJPf/oTc+bM4dixY7z99tvMmDEDL6+zF7IJ0VLIlskm8Pnh0jYzaPe++AC1QxEuRFEUampqqKysdL5rXvdfXWWW2Ww+ZzJLURQURbmk5znX8Hc3N7cLDn8/fV5WQ4a/Z2ZmcvXVV2M2mzl27BjXXXcdBw4cwNPTkyeeeILAwEBeffVVSkpKuOeee6ioqCAyMpIvvviCn376ie3btzNr1qyzznvw4EGeffZZoqKi8Pf3JyAggFtuuYX4+HhKSkooLi4mLi4OOJUglIH1QjSNnGor37jgxsnJXfzqLdAR6quqquLEiRPk5+dTWFh4ydsxvb29623HjIqKkjc+hBBNasWKFWzevBm9Xs+UKVNo37692iEJcU6SEGtkbW4Vexc/wuWCWXAqmVVVVVWvzbAukVVTU1OvxfD0ZJbdbr+sZJZOpztnMsvT07Pe8Hdvb+96mwzd3Jr332tJSQndunWjoKCAiooKpk2bxocffoi/vz+pqal4e3szZMgQAI4fP05WVhZBQUHEx8djtVqdFWhCiJZrdU412wtdp3Xy2hBPhkbKO/qtiaIoFBcXk52dTX5+PiUlJZSXl1NdXY3FYjnrd6y0YwohmtqBAwdYsGABDoeDpKQk+vfvr3ZIQpxFEmKNbMnvlRw4aXaZi+IL0QJXB3owuoOP2qGIK2Sz2ZxtGWe2GZ7eYmg2m52tsacnsy71x4hGo3EmeE5PZnl4eDgrs+paCb29vZ2VWb6+vnh7e0tiSAjRIlkVB58dKm31rZN1rZIPxAegl9lhLsVqtZKTk0Nubi4FBQXOdsyamhqsVutZx5/ejunn51dvO6afn58Kn4EQojUqKiris88+w2w206tXL5kxLVocSYg1IrvDwX/3lGBvQ19RnQae6tkOrUYunNVyvuHvdckss9lcb/i71WrFbrc3OJl1eothXTLL3d3dOfy9rs2wrsXw9Koso9Eo7zYLIVxaTrWVOUfKW31C7B5plWyTqqqq6m3HLC0tlXZMIUSjsFgszJ49m5KSEsLCwnjggQfQ62WUuWgZJCHWiApqbHyRXqZ2GM3u/nh/Qjzlh1pDORwOTCbTWS2GZ24yvNLh73UbQE8f/n7mvKy6yiyj0ehMZvn6+jrnZUkySwghLsxut7Nq/1F2Kq13tua4q3yI9/dQOwzRwpzejllQUEBxcXGD2jEDAwMJCwuTdkwh2jBFUZg/fz6HDh3C09OTGTNm4O/vr3ZYQkhCrDHtKTGReqLqgsfMnj6WYzs20+fWO7njn+81U2RNKynamx7t2tbA7rrh73XJrOrqaqqqqpybDE9vMVRr+Luvry8eHvLCRgghmorVaiUzM5NDhw5x6NAhbDYbnRJGkRMQo3ZoDZYY7U3PNva7XDQOm81Gdna2tGMKIS5q06ZNrFy5Eq1Wy8SJE4mNjVU7JNHGSVlPIyqosaEFzkx1LPr30xxck8Jzy/erEdYVeW10H8ryshg+48/c9NBfzrpfC+TX2OjRrv7tDoeDffv2YTAY6NKlS/MEe4kURXFuMTxXi2Fdm2FjD3+vu/g7s8WwrjKrbvi7r68vvr6+UkoshBAt1O+//86WLVvIzMzEbrej0WicFbtJPWPJxuuib5C1JJIME1dCr9fTsWNHOnbseM77z2zHrNuOWVJSQmFhIRkZGfWOd3Nzw2Aw4OPjQ2BgIMHBwURGRqrajulwONDIeBAhrtgNN9xAWFgY3333HXPnzmXYsGEkJCSoHZZow+QVdyPKrbaelQxzOBwcXr+M+BtHuGSJuMKpz/t0J06cICUlhYKCAsLCwho1IWaz2S44L+v0TYaNOfzd09Oz3vD3uqqscw1/9/Hxccm/ayGEEKds3bqV9PR055/rfreEh4fTrl072gEeWg0/H688db8aQV5E3Uv7sdImKZqYt7c3Xbt2pWvXrmfdpygKJSUlZGVlndWOmZ+fT25ubr3j69oxjUYjfn5+Td6OOXjwYL799lsiIyNJTk4mISEBX1/fRn0OIdqamJgYHnvsMWbPns3q1avJycnhD3/4g7x+EqqQhFgjsTscFJrOHjqafWAXFUX5dBuSdN7H1pSXsuKDVzi0fhmVJYUYfQOIvW4IIx95Hv/w9s7jNn//Keu+eBtTVQVdhyTSvlsvkt98AYC/LNlBQEQ0AAfXLWX9V++Sl74fRVEIuaozA//wAP3G3e0813N9ggGY8I936DtmIlC/nfOmB//C67f0dR6/avYbrJr9BgCv7CyqF3+RyY7icFBZUcHy5cs5ePCg8100k8nkPM5isVBeXl6vxfBcmwwbe/i7l5fXWcPfz5yXJcPfhRBCXKpbbrmFoqIiSkpK6v1u6tmzp/Pj+AAPfNy1LD5e2SK3T/q5a7m1o48M0Beq0mq1BAcHExwcfM77bTYbubm5ZGdnU1hYyMmTJ6moqKC6uprS0lKOHz9e7/i6dkwvLy/8/f0JDg4mLCyM6OjoBrdj2u12NmzY4JxztGfPHq655hp8fX3Jycnhj3/8I3a7nUceeYSoqCi6du0q1f1CXCI/Pz+eeOIJvvjiC9LT03n//feZPn06BoNUK4vmJT+1G0m5WUE5x9XuwTUpuHsaib32xnM+zmo2MXv6WAoyD6HV6wmKjuFkzu/sTvmRo9s38Nj3a/AOCOLQumUsfv05ALz823F8168cWpt61vl2Jf/IvBceBsC7XTB6dwO5h/ex4MXHqSwuYOi0Jy/p89G5uRN1TV9y0/dht1rwDQnHLyTinMfaHfD+F99wMuuY87a6FwhlZWW8+OKLlz383dPT85zzsmT4uxBCCLUYjUa6devG+vXr691+9dVX1/tzpJcbD3QNYENeDdsKa9GgbrVY3fNfG+LJoHAjblppARMtm16vJzo6mujo6HPeX1VVRXZ2Nnl5eRQWFjrbMU+ePElRUdFZ7Zh1Vf+nt2NGRETQoUMH3NzqJ4ePHTvm7AKorq5m9OjRdOjQgfLycr788kuio6P5y1/+gtVq5YEHHmDt2rVN9WUQwiXp9XqmT5/O4sWL2blzJ2+99Rb3338/oaGhaocm2hBJiDUS67myYZyq1uo8cChuHufOdu9ZupCCzEMATHrtM64emkTOoT28P3kEFUX5bPn+M27+4zOs/+pdAAIiO/Cn79ei9zDw2R/Hc2zH5nrnW/7+ywBEXdOXGZ/+jM7NnblP38eBNcms+XwWN9z9EO6exot+Pr7BYTz89VLnDLH+4+455wyxOqXlFee9Lzo6ul4iqy6ZVTf83c/PT1Z0CyGEaDXWr1/P+vXrufbaa0lPT6esrIyOHTvi7e191rFuWg3DIr2I83dXvVpMqsKEq/H29iY+Pp74+Piz7qtrx8zOziY/P/+C7ZiTJk0iNja23pyww4cPExgYCMDmzZuZMmUKO3bs4NNPP+X1118nMjISDw8P7HY769evZ8OGDURGRtKpUyfg/HPH1q5dy9/+9jdMJhMPPvgg06dPb+wvixCtyq233kpkZCRLlizh448/5rbbbqN79+5qhyXaCEmINRLbOSqgik8cpfBoOoOnzjzv47IP7gbAzWDk6qGn2ioju/YkuEMshceOkHPo1P0FR0/NKom7fhgeXqcuuK8Zfku9hFjVySLK8rMBuHrYaPTup2aC9Bg5jgNrkrGaaik4mk7U1b2v7JM9h/unzaAy+zdWrVpFSUlJvfsmTpwo2w6FEEK0eg6Hg7Vr17J+/XqGDBnC4MGDuf766/nxxx8ZOHDgBR9bVy22Jb+GHUUmzIqjySvG6s7vodXQN9jAwDCpChNtx6W2Y+bk5JyzImX//v3ORQE5OTl0796d8PBwJk+ezG+//UZcXBy33HIL7733HiEhIfz3v/8lIiKC999/H8C5bOP0pJjdbqdjx4489dRTLFy4kO3btzN9+nQURTlnl0NNTQ0LFizA29ub7t27y0Y+4bL69OlDaGgoX331FQsXLiQ3N5eRI0eqHZZoAyQh1kjs52qXXJuKVq8nPuHmxnui036pXqgN8VI34SjK/597Zqo6f5XXxWzcvJnf0jZhs9nOuu+3337Dy8vLOdPLzc3trI9lc48QQoiWzOFwsGrVKjZt2sTw4cMZNGgQAL6+vjzwwAOXdA43rYYbI7wYGGbkUKmZHUW1FNTaGz0xVrfxOsRTR79gT+IDPCQRJsQZLtaOefDgQeLi4gBIT08nPDwcgLy8PLRaLX379qV79+6EhYUxbNgwvv32WwCKior44IMP6Ny5M5MmTaqXFNPpdM5q0rS0NDw9Pc8bX2FhIR999BGbNm3C3d0dk8nE22+/Tbdu3SgrK2P27NkUFBQQHx9Pnz596Nu373nPJURrEBkZyeOPP87s2bP59ddfyc3NZcqUKTISRzQpSYg1Et05rjMPrU2lY6/rMPoFnPdx7bv1YitgNdVwYE2Ks2Wy6PdMACK79gIgNCae47t+JePXtVhqq9G7Gzi4JqXeubwDg/EPa09Zfjb7Vy3h+onT0bm5s3fZTwC4GTwJ7RTnPLbqZBHFvx8FoOh4prN183TuhlO/qC21NRf8/H8/duycyTCAH3/88YKPBZzbHM+VLDvz40s9ru7j892v0+kuGpcQQgjhcDhYtmwZW7duZcSIERetBrsYN62GHu0M9GhnIK/ays5iEwdLzc431+oSWpfq9ON1GugW4EGfYAPhRmmNFOJyZWZmMnHiqcVTv//+uzM5dvLkSRRFwcfHB4CdO3c65wfabDaCg4N58sknsVpPbWHXnPFmtkajobKykvz8fG644Yazntdut6PT6ViyZAnr1q3jxx9/JDAwkH/961/83//9H/Pnz6e4uBi9Xk9YWBg7duwgNTWV5557jv79+zfp10SIpmY0Gpk5cyZz587l6NGjzJo1ixkzZpxzJIEQjUESYo1Ef0aFU1VpMb/v3c7op1664ON6jrqdjXM+pOC3w3z7zAPOofoORcE3OIyBd5161/nGex/l+K5fKTlxlDdu7Y/O3Z2astKzzjfikeeZ98LDZO3fwWuje6N3N1CWlwXA0Psfd84PixmQwJ6lC9k490OyD+wkN33/OSvOgjt2pvDYETZ//wlHd2wiLCaeCf9896zj7r1nEjmH97F69WpMJpPzXO7u7jz88MNYrVZsNhs2m63BH9f92WQynfe4uo2UDaHRaC4pcebm5uYc8t/QZNy5knlSDSeEEK2Hw+EgJSWFtLQ0kpKSGv0FZ7iXG6O93EiM9qbYZCe/xkZ+jY3caitFJvs5K9Dr6DQQbNAR4eVGmFFPmFFPkEGHVn7PCHHF0tLSeO65Uwutdu3axZAhQwCcyaiQkBDgVPXY1KlTAZxbJuuSZedTUVFBTU0NkZGRZ91XVw2zevVqevXq5ZxjFhQUhLe3NzU1NVx11VXMnDnT+XxPP/00r732GvPnzz/v7DIhWgutVsvkyZNZtWoVGzdu5O2332by5MnnreZsLnaHg3KzglVxYHM4sDtO/R7WazS4aTX4eWjRyfdeqyMJsUZyZivC4XXLcCgK3QYnXvhxHgZmfPoLKz54hUPrl1F84jeMvgHEDr+VkY88j3dAEABdB4/k1r+8wtrPZ2GqqiS+7/WEde7Kig9eBUD/v6H9vUffgYeXN+u/epfc9AOYKisIj7uG6++cRr9xdzufd/STL2KqquTYzs2UZB9n6P2Pc3jDco7t3FIvvpsfeY6K4gLyjuwn5+BuOE+bpodeT79+/ejRowdbtmxh48aN2Gw29Hp9g9dcXy6Hw3FWEu1yEnBnJuNqa2sveNylbNA83cUq3c5MoDW08u1cH0upsRBCNJzD4WDx4sXs2rWLW2+9lT59+jTZc2k1GkI89YR46unR7tRtisNB2f8uvu0OBzYH6DWg+9/Ft7+HVpJfQjSRAwcOEBUVBZyah3vttdcCp5JZDofDmajq2bMnaWlphIWFMWDAgLO2VZ6uLlFVWlpKbW2tM6l2rgTW0aNHGTFihPPPtbW1+Pv7U1FRQVhYGIqiOGeP5ebm0qFDh/OeS4jWaPjw4YSHh7NgwQK++OKLJnlT6nzsDgfFtXbya20UXMabVKFGPWGeeoI8dZIka+E0joa+mhfnZHc4eHNPCXXLJr9+YjJl+dnM/G5N45zfaqWiKI+AiFOZccVu58uZE8nYsgafoFCeW7ZPtV+AOg081bNdvYvy6upq5zr6xMQLJwVbM4fDgaIoV5R4OzMBdynJvIZWw2m1WlVaUuWiTAjRWimKwi+//MLevXsZO3YsPXv2VDskIUQLUVtb65z/tWfPHj744AOOHz/Ol19+yYEDB5g/fz5vv/32WUul6qq3NmzYwEcffcTcuXPPOnddy2T79u3rLex48skn8fPz44knnsDX19d5/Isvvsj69et55ZVX6iUL6l7iybWYaO2Ki4v59NNPMZvN9OzZk3HjxjXZc+VVW9lRbOJQI44x6BrgQV8ZY9BiSYVYI9FpNIQYdOTXnkpUdOg5gGsnTGm081tMNfxn7AAiu/bCJyiE/MxDnMw+DsDNDz+r6i+74HO0Z3h5ebl0IqyORqNBp9Oh0+madZOmoijY7fZGq4KzWq1YLBZqamou+JiGamhF25W2pLq5ucmFnxDiiimKwqJFizhw4ICsfxdCnOX0Yfg9e/bk448/dv45PDyc3r17n/O68OjRowwbNoyamhrKy8sxGAzMmDGDa6+9FrPZDOB8XOfOnfn999+dCbHNmzfz5z//2TlLyWKxMHPmTA4dOsS7775Ljx49znq+rKwsvvrqKwwGA15eXvj5+REcHEx4eDhRUVH4+/s32tdEiKYSFBTEk08+ySeffMKePXvIz89n2rRpzpbhK2VVHBwqNZNWVEvhORbdNCQZdubxdgccOGlm/0kzoZ46+gZ70lUW3bQoUiHWiJZnVbG72NTgb5pLYTWb+O6ZaWQf3EVNWSluBk8i4rtzw90P0W3wqCZ4xkujBXoFGRgRJYMOXZ3D4cBut19xFVzdvLdLOc5ms6EoDfuOqlvQ0NwtqZKIE8I12O12FixYQHp6OuPHj6dbt25qhySEcCE1NTVkZ2eTmZnJ4cOH6d+/PwkJCWzcuJE333yTRYsWAbBq1SpeffVVJk6cSHV1NZ9++im7d+9Go9GQk5PDM888Q/v27Xn11VfP+TwOh4Pjx4+zfPlyqqqqnLN4z6TX6/H09MTb25vAwECCg4OJiIggKioKg8HQpF8LIRrC4XAwf/58Dh48iKenJ9OnTycg4NTyOovFQm1tbYNG9VgVB1vya0grMmFRHI2+8flMded312roF2xgYJhREmMtgCTEGtGeEhOpJ6rUDqPZJUV706Od/MIUTeNKW1LPVxF3sY8b4swFDU1VBScLGoRoWjabjfnz55ORkcG9997rnMkjhBDNzWq18vnnn7Nhwwb0ej0vvvgi0dHRlJSU0Lt3b7Kzs/nPf/5DdHQ0nTt3pnv37hedGasoCqWlpWRlZZGfn09xcTHl5eVUV1djNpvPehNSo9Hg7u6O0WjE19eXwMBAQkNDad++PeHh4TKjVqhi8+bNrFixAq1Wy1133UXHjh35/PPPKSsr44knnsDd3f2i58iptrL4eCXlFqVJk2DnowH83LXc2tGHSC9ppVSTJMQaUUGNjS/Sy9QOo9ndH+9PiKd03wrXUVcNdyVVcA1NwFmt1gYvaGjo9tPGaEmVi1/hqqxWK/PmzePYsWNMmTLFOUxbCCFaEqvVyubNmykqKmLfvn0cPnwYd3d33nzzTeeQ/stls9nIy8sjJyeHgoICTp486dyIea7rFK1Wi4eHB97e3s52zLCwMKKiopyVO0I0hWPHjjF37lzsdjshISEUFRXhcDguOnjfqjjYkFfDtsLaJq8Iu5i65x8Q4klCuFSLqUUSYo3I7nDw3z0lF9w+4WrONVBfCHF5Lrcl9XKScHX/v9wFDVeahGtIMk4WNIimZrVa+f777zlx4gQTJ06kU6dOaockhBAtTk1NDVlZWeTm5lJcXMzJkycvuR0zICCAkJAQaccUjaaiooL33nuv3pxjf39/Zs6cec7rRrWrwi7EX6rFVCMJsUa25PdKDpw0t7hvsqagBa4O9GB0Bx+1QxFCXCaHw3FZlW9XmoxrqMupaLuSLamyoKHtsFgsfPvtt+Tm5jJp0iQ6dux4wePrtsQJIYT4/+raMbOzs8nLy7vkdkxPT098fX1p166dsx0zLCwMnU6n0mciWov09HS+//77s26/6667iIuLq3fb4VIzPx+vBNStCjufuquKsR19iA9ovkVtQhJijS6v2spXR8rVDqPZTInzkxWyQogGcTgcKIrSrHPhrFZrgxc0aLVaVVpSJdnSfMxmM3PnzqWgoIC7776b6Ojo8x7bu3dvnn32We68805mzpzJkCFDuP322wF4+eWXWb9+PRMmTKBDhw706tWLoKCgi/5d2mw2cnNzqa2txd/fn+DgYGlLFkK4pMttx/Ty8nL+fAwNDXW2Y8rvyrbN4XDw+uuvYzKZzrovLCyMBx980Pnn1jbnOzHam54yn7vZyOCnRhbu5UaIp46iWnuLzD43Fg0Q4qmTZJgQosE0Gg06na7Z3/2tW9DQmFVwZrOZqqqqCz6mIeoWNDTnltS2uqChtraWuXPnUlxczOTJk2nfvv0Fjy8rK3O2+Lz22mvOr9mWLVs4dOgQ06ZNY8KECSQkJPD+++8THBzsfOz5qsry8/P55z//yY8//khERARLliwhNjb2vDG88sorJCcnY7PZeOWVVxg6dCgAqampLFu2DJ1Oh8FgoFOnTkyYMKFB27aEEKIp6fV6oqKizjufsa4dMy8vj6KiIkpLS6msrKSsrIzi4mIyMzPPOt/p7ZjBwcFERkZKO2YbodFouO2220hPT+f333+npKTEeV9+fj7bt2+nf//+rS4ZBjjjlaRY85CEWBPoF+xJSiv7xmsoB6c+TyGEaC20Wi3u7u6XtH2osdQtaLiSKrgzk3E2m805r+V8j21oNdzpCxqaqyVVzUqompoa5syZQ1lZGVOmTCE8PPyij7Farc4XWZMnT+ahhx7C19eXp59+mqysLBwOBxkZGezYsYP/+7//IzY2lgcffJDOnTufN+Ho6+vLyy+/zOTJk/nggw/OeVxdMu3999/n4MGD/Pvf/8ZkMvH3v/+d8PBw4uPjWbduHXv37mX48OG4u7s3+O9fCCHUZjQaiYuLO6vVDU69oVVWVlZvO2ZZWRnV1dUUFBSQl5dX73iNRoObm5tzO2ZdO2ZkZCRhYWHo9fIS2BV06dKFLl26AKfe5MrOzubgwYPs3buXpUuXYvILY1N163y9mnqiCg+tRtonm4H8NGgCXQM8WJldjUVx3Rox+QYVQoiLO73iqznfsa6rhrvcKrhzVcSZTCaqqqoueFxD1L1gac6WVJ1OR01NDd988w2VlZVMmTKF0NDQS4rXbDZjNBqBU3NLTp48yZAhQxg6dCi7d+9m5MiRxMXF8cYbb9C1a1eCg4MxGo1kZWWxbds2Ro4cibe3d71z+vr64uvry+7duzGbzXh4nP17VVEUdDod77//Pi+//DKDBw8G4KWXXmLXrl3Ex8fj5ubG+PHjeeSRRxr0dyCEEK2BVqslMDCQwMBAevbsedb9p7djFhYWUlJS4mzHLC8v58SJE2ed7/R2zKCgIOd2TH9/f2ldb4U8PT3p3LkznTt3JikpiSUbtrK5unVXWP18vBIfd60M2m9ikhBrAm5aDf2CDWwpqHXZtsm+wQZZDSuEEC2UWtVwDZnrdqGEnd1ux2q1YrVaqampueBjL3cUqtFo5Icffjiroi0oKIhRo0addbzFYsHLyws4VVHn5eWFXq+nQ4cOVFZWMmnSJHQ6HYqi8NBDD9GhQwcAMjIyKCwsvGDVVt2213P9fdW9MCsuLqZr167O27t27Upubi4A1dXVfPrpp+zfv5+YmBimTp1KUFDQZX1dhBCitbmUdszs7Gxyc3MvuR3TYDDg4+PjbMes247p6dk6K47aFJ2egtBuYGn91dKLj1fyQNcAed3dhCQh1kQGhhk5WGpukWtdr4QG8PfQcn2YUe1QhBBCtCB1FV9ubs37TualtqRWVlayYcMGbDYbffr0wd3d/ZzHn68ywGazOV8IWSwWZzVXZWUlVquViooKAgICnM9Vl6ire8f6Quo2r56rjaeujVJRFGeFGpxKymk0GhwOB2PGjOGaa67BbDZz8OBBnnvuOf773//i4yNboIUQwmg01muvO11jtGOGhIQQGRlJeHi4tGO2ABvyalziNbgDKLMobMyrYWikl9rhuCz5jm0ibloNt3b04RsX2zjpAG7p4INestRCCCFagLoFDedqN6xTVlbG119/jV6v5/777ycwMLDBz2O32+slpE6vEvDw8HC2xJrNZiIjIxu0qKCuOu3Mlkr4/zPEzlzSkJOTw6BBg3A4HAwZMoQhQ4YApxJ30dHRTJ8+nQEDBtQ714IFCygtLW2yltS2uqBBCNF6XUo7Zn5+vnM7ZkPaMf38/AgKCiI8PFzaMZtJTrWVbYW1aofRqLYW1tLF311aJ5uIJMSaUKSXGwNCPNle6Dqtk9eGeMo3oxBCiFajtLSUr776Co1Gw9SpU/H397+s81gsFmfSq7Cw0Lkl9eTJk5SXlzurAm699VYee+wxIiIi+Otf/0p+fj4HDx5k7NixZ70QslgsZGRkcOjQIcrKyigsLDxr4HNdgmnUqFEsWLCAp59+mtraWrZu3cp777131jn1ev15t1qGhITg5ubmbEmt25R6oTbWy1nQcKkLFy5lmcOlJOOae2OtEKLt0Ov1tG/f/rybiGtqasjJySEnJ8fZjllVVeVsx/ztt9/OOt+Z7Zh1CbPT33QRDWdVHCw+XokGXOa1N5zq0JLWyaajcVzu8A1xSayKg88Olbb6ss26VskH4gOkOkwIIUSrUFJS4qwMu/fee/Hz87vsc50+9D4/P5/AwEDc3d3Jzc3FZDLRqVMnAH777TdWrlxJTU0N06dP5+jRo2zevJmHHnrorHPm5OQwZswYampqMJlMADz99NM88sgj7N27l+eee45ffvkFnU7H77//ztSpU6mtrcVut3PPPffwpz/9CYCHH34Yh8OBj48PJSUlWK1WPv3000aZIVe3oOFS579d6pKGi33cEKcvaGiOJQ11yTyphhNCXIjD4aC0tPSc7Zhms/msNxzObMcMDAx0bseUdsyLW59b7dIzvK8P9eTGCGmdbGySEGsGOdVW5hwpb9XfnBrgni5+Uh0mhBCiVSgqKuLrr7/GYDBw7733tsp5Wna7vV71U15eHsXFxdhsNrp37+58cbR48WIKCgowm81otVomTZp0Rck/tTkcjnpVbJezmOH0BNylJvAaekl8seTamQm4hla+netjabcSwnXY7Xby8/PJzs6moKDAWXFcW1uLxWI562fS+dox27dvT0BAQJv++WBVHLy77yQWpTW/4r4wD62GR7sHSpVYI5OEWDM5XGrmp+OVaodx2cZd5UO8//nnswghhBAtRWFhIV9//TVeXl5Mnjz5nLO5hDiToiiXXfl2OVVwdRtVG0Kr1TZZFdyFWlKlGk6I5mcymcjKynJuxzx58iRVVVXU1taes5K2rh3T29ubwMBAgoKCnNsxXb0dc2+JiZQTVWqH0eRGR3vTvZ1B7TBciiTEmtGeEhOprfAbNTHam57yjSeEEKIVyMvL45tvvsHPz4/Jkye7/IsA0bo5HI4rroJraDKubqtpQzS0uq0xljRIEk6ICzu9HbOoqIjy8nKqqqraZDvm54dLKaq1t+qOrIvRACGeOu6LD1A7FJciCbFm1tqSYpIME0II0Vrk5OQwZ84cAgMDueeee+ptghRCnOJwOOpVwzW0Cu5CLakXSuBd7oKGxkzCXUpLqiTihCtQFIW8vLx67Zh12zEvtR0zLCyM9u3bExgY2KLbMfOqrXx1pFztMJrNlC5+hMsYo0YjCTEVHC418/P/2idb4he/7jJgrLRJCiGEaCWysrKYO3cuwcHB3H333c6NkEKIluH0BQ3NsZih7uOG0Gg0zVoFV/exJOFEc7uSdsy67ZgtpR1zye+VHDhpbpGvqxubFrg60IPRHVrfXNSWShJiKsmptrL4eGWL3D7p767l1o4+MkBfCCFEq/D777/z7bffEhYWxqRJk5zbIIUQbVvdgobmbEm12WyXVQ3XkIq2xljS0JIrfoT6SktLyc7OJi8vz9mOWV1djclkOm87pqenJ76+vrRr146QkBAiIyOJiIi4onZMk8lEWloaffr0OWfize5w8N89Jdhb2gvqJqTTwFM926GVRHqjkISYiqyKgw15NWwrrEWDutVidc9/bYgng8KNsr1CCCFEq3D06FG+//572rdvz1133YW7u7vaIQkh2rgraUm93Llwl7ugoTmXNMiCBtdQ146Zk5NDQUEBJSUll9SOaTQa8ff3p127doSFhREVFXXRdszdu3fz888/YzQaGTNmDHFxcfXuL6ix8UV6WVN8mi3a/fH+hHi27rlvLYUkxFqAllAtJlVhQgghWpvMzEx++OEHOnTowJ133ombm/wOE0K0TacvaLiSKriGJuMa+lKyIdVtp1fOXUlLqlTDNS+TyUR2dja5ubkUFhZeUTvm1q1b2bBhg/PfWY8ePUhMTHSORWht87kbS1K0Nz1kznejkIRYC2FVHGzJr2FHkQmz4mjyirG683toNfQNNjAwTKrChBBCtB5Hjhxh3rx5xMTEcMcdd7T6DVlCCNHa1C1ouJLFDBda0nC+4y6nGq6hSbTLXcxwekuqVMOdW1lZGVlZWeTl5VFcXExZWdl52zHPxd3dnaFDhzJgwABW5tSwu9hEw5qUWzct0CvIwIgob7VDcQmSEGthrIqDQ6VmdhTVUlBrb/TEmBZQgFBPHf2CPYkP8JBEmBBCiFbl0KFDzJ8/ny5dujBhwgR0Op3aIQkhhGgmiqJgt9svu/Ltcpc0NETdgobmWNLgSgsaFEUhPz/fuR1z//79WCyW8x4fkHQfNfpLG+q/6N9Pc3BNCs8t39/qqwbDPHVMjQ9QOwyXIG+ntjBuWg092hno0c5AXrWVncUmDpaanYMC6xJal+r043VAt0AP+gQbCDdKW4kQQojWZ//+/SxcuJBu3bpx2223STJMCCHaGK1W66z6ai6nL2hozJZUk8l0weMuZ0HDpVa3NXSZw/k+bszfw1qtloiICCIiIgA4fPgwFosFjUaDw+Fw3h8SEkJwaCjr9Z6XdF6Hw8Hh9cuIv3HEFSfDbFYLerez55U6HA4Umw3dFfy7PN+5z1RksqM4HDJYvxFIQqwFC/dyY7SXG4nR3hSb7OTX2MivsZFbbaXIZL/gNg2dBoINOiK83Agz6tmwZBElJzIZ8NBDBBtlTasQQojWZ+/evfz00090796dsWPHtvp3eIUQQrQOp1d8NafLaUk9X5Lu9CRcVVXVBY9riLotk41dEafT6TCZTGg0Gtq3b0+3bt2Ij4/H29sbnU5HqVlh7aHSS4ox+8AuKory6TYkyXnbruQf2fTdbAqPpqPRaunQcwCjZr5ARFx3AI6mbeKTGeMAmPTap6z/+n3y0vdz29/eBGD+P2YCMPXd70l56+8U/57JAx8uoFO/Gzi+61dWffImWft3YDObCYzsQL9xdzPo7ofQ/i+B+NroPpTlZZEw+RFqyk9yYHUyEfHdmT77p4t+PnYHlJkVAg3ypuCVkoRYK6DVaAjx1BPiqadHu1O3KQ4HZWYFq+LA7nBgc4BeAzqNBjetBn8Pbb2M8YriXByKwldffcX06dPx8/NT6bMRQgghGm7Xrl388ssv9OrVi1tvvVWSYUIIIVyeVqvF3d29WTco11XDNfZiBpPJdMHHXGiSU1ZWFllZWSxbtsx5m1tgGNpB4y/pczq4JgV3TyOx194IwLov32XpOy8CENQhBktNNRlb1vD77q088s0KQjp1qff4H/72MEY/fwLbdwSNBk6L9Zsn78UnKBT/8CjgVCLts4cnoNhsePr64x/enqLjGaTO+gfFv2dy+wtv1Tv35u8/QavT0a79VbgZLq3iDU6NWhJXThJirZRWo7nkjLDNZqO6uhqAmpoavv76ax544AGMxkvrtxZCCCHUlJaWRnJyMn379mX06NGtfkaKEEII0VKpVQ13sZbUMz8usevYcYnnPrhuKZ0HDsXNw4CltoZVs/8DwE0PPcPwGU9jt9n4cGoiOQd3s+bzWdz5rw/qPf7qoUnc+e+P0Op0KHY7u5LnOe+7/q7pJD3xDwAUu51PH7wNxWbDPzyKmd+vwdPHj8Vv/JXN380m7ae5DLnvT6cSa//j4eXNo3NWEhARhdKAhRF2GQXfKCQh1gYUFhY6M+4Oh4PS0lLmzJnD1KlTm/XdBiGEEKKhtm7dytKlSxkwYACjRo2SZJgQQgjhgnQ6HTqdDg8Pj0s6/kSVlR0Z5Rc9rvjEUQqPpjN46qkWx4Kj6VhNNQCs/Og1Vn70Wr3js/alnXWO6yfOcLY6as+YmTbonoecH2t1OrIP7gYgbtBNePqc6srqlTiezd/NxuFwkHNoT72E2DXDbiEgIuqc574Qm+TDGoUkxNqA/Pz8en92OBzk5eWxcOFC7rrrLpWiEkIIIS5s8+bNrFixgoEDB3LzzTdLMkwIIYQQwKmZ2Zfi4NpUtHo98Qk3n7rhtMqqkKu64OFVf7620f/s7Y0+QSHnPb9PUOg5b7/UKxbvduc/94Xo5ZKoUUhCrA04MyEG4ObmJnPEhBBCtFjr169nzZo1JCQkMHToUEmGCSGEEMJJf4nXBYfWptKx13UY/U4lukJj4nEzeGI11dL5+mGMfvJF5zVG7uG9WM2ms85xoWuQM+9r360Xx3Zu4fDGlYyoLMfTx489Sxc6j43s2vOSz30hOrkuahSSEGsDKisrAQgKCqK8vJwuXbrIqnohhBAtksPhYO3ataxfv54hQ4YwePBgtUMSQgghRAvjpr14QqiqtJjf925n9FMvOW9z9zQybNqTLHvv32ya+xH7lv+EV0A7ygpyqS0vZfiMP9Oh54DLjuumh57hs4cnUJaXxRu39sPoH0jJiaMA9Bt3d712yStxKZ+/uDhJiLUBY8aMITExEV9fX3766Sfy8vIkGSaEEKLFcTgcrFq1ik2bNjF8+HAGDRqkdkhCCCGEaIH8PLRoNXChZYuH1y3DoSh0G5xY7/Yh9z+Ob0g4W374jILfDmOqqsAvNJIeN4/l6mGjryiuTv1uYNpHC1n96X/J2pdGWW4WwR0702/sJAbd88crOncdnQb8PWTbdmPQOC6031S4nP3797NgwQKeeOIJfH191Q5HCCGEAE4lw5YvX86vv/7KiBEjGDhwoNohCSGEEKIF+/JwKfm159/M+PUTkynLz2bmd2uaMaqmF+apY2r82bPORMNJWrGNiYmJQaPRkJmZqXYoQgghBHAqGZaamsqvv/5KYmKiJMOEEEIIcVERXm4XTGh06DmAkY/+tdniaQ5aTn3eonFIy2Qb4+npSWRkJJmZmfTp00ftcIQQQrRxDoeDxYsXs2vXLm655Rb69u2rdkhCCCGEaAVCjXqUC9w/eOpjzRZLc1GAMKOkcRqLVIi1QbGxsRw9ehS7/fzlpUIIIURTUxSFn3/+mV27djF27FhJhgkhhBDikoV5ts3EkCTEGo8kxNqgzp07YzabycrKUjsUIYQQbZSiKPz000/s3buX22+/nV69eqkdkhBCCCFakSBPHbo2tmxRp4EggyzIayySEGuDwsPD8fLykjliQgghVGG321mwYAEHDhxgwoQJdO/eXe2QhBBCCNHK6DQaugZ40FZyYlqgW4AHWk1b+YybniTE2iCNRkNMTIwkxIQQQjQ7m83Gjz/+yOHDh7njjjvo1q2b2iEJIYQQopXqG2TAoXYQzUQB+gQb1A7DpUhCrI2KjY2loKCAiooKtUMRQgjRRthsNubNm0dmZiZ33XUX8fHxaockhBBCiFYs3MuNEE+dy1eJaYBQTx3hRtkw2ZgkIdZGxcTEoNFopEpMCCFEs7BarXz33XccO3aMiRMn0rlzZ7VDEkIIIYQL6Bfs6fJVYg5OfZ6icUlCrI0yGo1ERkZKQkwIIUSTs1gsfPvtt2RlZXH33XcTExOjdkhCCCGEcBFdAzxw17p2jZiHVkN8gIfaYbgcSYi1YbGxsRw9ehS73a52KEIIIVyU2Wxmzpw55Obmcs8999CxY0e1QxJCCCGEC3HTaugXbHDptsm+wQbcXDzppwZJiLVhsbGxmM1msrOz1Q5FCCGECzKZTHzzzTcUFhYyefJkoqOj1Q5JCCGEEC5oYJgRP3etyyXFNECAh5brw4xqh+KSJCHWhkVERGA0GsnIyFA7FCGEEC6mpqaGr7/+mpMnT3LvvffSvn17tUMSQgghhIty02q4taOPy80ScwC3dPBBL9VhTUISYm2YRqMhNjZW5ogJIYRoVNXV1Xz99deUl5dz7733EhERoXZIQgghhHBxkV5uDAjxdKkqsWtDPIn0ks2STUUSYm1cbGwsBQUFVFRUqB2KEEIIF1BVVcVXX31FVVUVU6ZMISwsTO2QhBBCCNFGJIS7RutkXatkQri0SjYlSYi1cTExMWg0GqkSE0IIccUqKir48ssvMZlMTJ06lZCQELVDEkIIIUQbUtc66QqkVbLpSUKsjTMajURGRkpCTAghxBUpLy/nyy+/xGq1MnXqVIKCgtQOSQghhBBtUKSXG2NbeVJs7FU+0irZDCQhJoiNjeXo0aPY7Xa1QxFCCNEKlZaW8sUXX+BwOLjvvvsIDAxUOyQhhBBCtGHxAR4kRnurHcZlSYz2Jt7fQ+0w2gRJiAliY2Mxm81kZ2erHYoQQohWpqSkhC+//BKdTsfUqVPx9/dXOyQhhBBCCHq2M7S6pFhitDc92xnUDqPNkISYICIiAqPRSEZGhtqhCCGEaEWKior48ssvcXd3Z+rUqfj5+akdkhBCCCGEU892BsZ19EEDLXbQfl1s467ykWRYM5OEmECj0RAbGytzxIQQQlyywsJCvvrqKzw9PZkyZQo+Pq17VocQQgghXFN8gAf3dPFrsdsn/dy13NPFT9okVSAJMQGcapssKCigsrJS7VCEEEK0cPn5+Xz55Zd4e3szZcoUvL1bVzuCEEIIIdqWSC83HugaQP8QT0D9arG65782xJMHugbIAH2VSEJMABATEwMgVWJCCCEuKDc3l6+++oqAgACmTJmCl5eX2iEJIYQQQlyUm1bDsEgvJreAajE/dy2Tu/gxNNILN63a6bm2SxJiAgCj0UhkZKQkxIQQQpxXVlYWX3/9NUFBQUyePBlPT0+1QxJCCCGEaJC6arGBoZ54/C8Z1dQpqbrze2g1XB8qVWEthV7tAETLERsby6+//oqiKGi1kisVQgjx//3+++98++23hIWFMWnSJDw8ZM6FEEIIIVonN62GGyO8GBhm5FCpmR1FtRTU2tEAjkZ8Hi2gACGeOvoFexIf4CEVYS2IJMSEU+fOnVm3bh1ZWVl06NBB7XCEEEK0EMeOHeO7774jf27+LQAAP4FJREFUMjKSiRMn4u7urnZIQgghhBBXzE2roUc7Az3aGcirtrKz2MTBUjP2/2XF6hJal+r043Ua6BbgQZ9gA+FGqQZriSQhJpwiIiIwGo1kZmZKQkwIIQRwarbkDz/8QIcOHbjzzjtxc5MLOiGEEEK4nnAvN0Z7uZEY7U2xyU5+jY38Ghu51VaKTHZnkuxcdBoINuiI8HIjzKgnzKgnyKBDq5FqsJZMEmLCSaPREBMTQ2ZmJsOHD1c7HCGEECo7cuQI8+bNo1OnTvzhD39Ar5fLBiGEEEK4Nq1GQ4innhBPPT3anbpNcTgoMytYFQd2hwObA/Qa0Gk0uGk1+HtoJfnVCsmVragnNjaWffv2UVlZiY+Pj9rhCCGEUMmhQ4eYP38+Xbp0YcKECeh0OrVDEkIIIYRQhVajIdAg10KuRiani3piY2MBZNukEEK0YQcOHODHH3+ka9eukgwTQgghhBAuSRJioh6j0UhkZKQkxIQQoo3au3cvCxYsoHv37tx+++2SDBNCCCGEEC5JEmLiLLGxsfz2228oSkP2aQghhGjtdu3axaJFi+jZsydjx45Fq5XLBCGEEEII4ZrkSlecJTY2FrPZTFZWltqhCCGEaCZpaWn88ssv9O3blzFjxkgyTAghhBBCuDS52hVniYiIwGg0StukEEK0EVu3biU5OZkBAwYwevRoNLIlSQghhBBCuDhJiImzaLVaYmJiJCEmhBBtwObNm1m6dCkDBw5k1KhRkgwTQgghhBBtgiTExDnFxsaSn59PZWWl2qEIIYRoIhs2bGDFihUMGjSIm2++WZJhQgghhBCizZCEmDin2NhYAKkSE0IIF+RwOFi7di2rV69myJAhDBs2TJJhQgghhBCiTZGEmDgno9FIZGSkJMSEEMLFOBwOVq1axbp16xg+fDiDBw+WZJgQQgghhGhzJCEmzis2NpajR4+iKIraoQghhGgEDoeD5cuXs2nTJkaMGMGgQYPUDkkIIYQQQghVSEJMnFdsbCwmk4ns7Gy1QxFCCHGFHA4Hqamp/PrrryQmJjJw4EC1QxJCCCGEEEI1khAT5xUREYGnpycZGRlqhyKEEOIKOBwOlixZwvbt27nlllsYMGCA2iEJIYQQQgihKkmIifPSarXExsbKHDEhhGjFFEXh559/ZufOnYwdO5a+ffuqHZIQQgghhBCqk4SYuKDY2Fjy8/OpqqpSOxQhhBANpCgKP/30E3v37uW2226jV69eaockhBBCCCFEiyAJMXFBMTExAFIlJoQQrYzdbmfBggUcOHCA8ePH06NHD7VDEkIIIYQQosWQhJi4IC8vLyIiIiQhJoQQrYjNZuPHH3/k8OHD3HHHHVx99dVqhySEEEIIIUSLIgkxcVGxsbH89ttvKIqidihCCCEuwmazMW/ePDIzM7nrrruIj49XOyQhhBBCCCFaHEmIiYvq3LkzJpOJ7OxstUMRQghxAVarle+++45jx44xceJEOnfurHZIQgghhBBCtEiSEBMXFRERgaenp7RNCiFEC2axWPj222/Jyspi0qRJzhmQQgghhBBCiLNJQkxc1P9r786jqywPve//9kQGAmRgCHMI90ZAAQUtKIogWhVERBFkSja1x/X0tJ61Or+n57yn0+lpn77vs067Oq167OtOmEEERAWcxRFFAVEIZCABkpABQuaJve/3D4UqlSGQ5Np739/PX5psk1+6im2+67ru7Xa7NXLkSIIYAESo1tZWrVy5UmVlZVq6dKlGjBhhehIAAAAQ0QhiuCyWZam8vFwNDQ2mpwAAvqClpUUrVqxQZWWlli1bpmHDhpmeBAAAAEQ8ghgui2VZksQpMQCIIM3NzcrNzdXJkyeVlZWlIUOGmJ4EAAAARAWCGC5Lz549NWjQIIIYAESIxsZG5eTkqLa2VtnZ2Ro0aJDpSQAAAEDUIIjhslmWpcLCQoXDYdNTAMDRGhoalJOTo4aGBmVnZys9Pd30JAAAACCqEMRw2fx+v1paWnT8+HHTUwDAserq6hQMBtXc3KxAIKD+/fubngQAAABEHYIYLtugQYOUkJDAtUkAMKS2tlbBYFDt7e1avny5+vbta3oSAAAAEJUIYrhsbrdbI0eOJIgBgAE1NTUKBoOybVuBQECpqammJwEAAABRiyCGDrEsS+Xl5WpoaDA9BQAc49SpUwoGg3K5XAoEAkpJSTE9CQAAAIhqBDF0iGVZksQpMQDoJtXV1Xrqqafk8/m0fPly9enTx/QkAAAAIOoRxNAhPXv21KBBgwhiANANKisrFQwGlZCQoEAgoF69epmeBAAAAMQEghg6zLIsFRYWKhwOm54CADHrxIkTCgaDSkpKUnZ2tpKSkkxPAgAAAGIGQQwdZlmWWlpaVFpaanoKAMSksrIy5eTkKDk5WdnZ2erZs6fpSQAAAEBMIYihwwYPHqyEhATl5+ebngIAMef48ePKzc1V3759lZWVpYSEBNOTAAAAgJhDEEOHud1ujRw5kueIAUAnKykp0YoVKzRgwAAtXbpU8fHxpicBAAAAMYkghitiWZbKy8vV0NBgegoAxIQjR45o1apVGjRokJYsWaK4uDjTkwAAAICYRRDDFRk5cqQkqbCw0PASAIh+hYWFWr16tYYOHarFixerR48epicBAAAAMY0ghiuSlJSkgQMHcm0SAK7S4cOHtWbNGo0YMUKLFi2Sz+czPQkAAACIeQQxXDHLslRQUKBwOGx6CgBEpby8PK1bt05+v18LFy6U1+s1PQkAAABwBIIYrpjf71dLS4tKS0tNTwGAqPPpp59qw4YNGj16tObPny+Px2N6EgAAAOAYBDFcscGDBys+Pl75+fmmpwBAVPn444+1ceNGXXvttXrooYeIYQAAAEA3I4jhirndbo0cOZLniAFAB+zZs0ebNm3ShAkT9MADD8jt5n+KAQAAgO7G/wvHVfH7/SovL1dDQ4PpKQAQ8T788EM9++yzmjhxou6//35iGAAAAGAI/08cV2XkyJGSpMLCQsNLACCyvf/++3ruued000036b777pPL5TI9CQAAAHAsghiuSlJSkgYOHMi1SQC4iHfeeUfbtm3TzTffrHvvvZcYBgAAABhGEMNVsyxLhYWFCofDpqcAQMR588039dJLL+nWW2/VXXfdRQwDAAAAIgBBDFfN7/erublZpaWlpqcAQMSwbVuvv/66Xn31Vd1+++264447iGEAAABAhCCI4aoNHjxY8fHxXJsEgM/Ztq1XX31Vb7zxhu644w5Nnz6dGAYAAABEEIIYrprb7dbIkSMJYgCgz2LYiy++qLfeekt33XWXbrvtNtOTAAAAAJyHIIZOYVmWysrK1NjYaHoKABhj27a2bdum9957T/fcc49uueUW05MAAAAAfAWCGDqFZVmSxCkxAI5l27aee+45ffDBB7rvvvs0efJk05MAAAAAXABBDJ0iKSlJAwcOJIgBcKRwOKxnn31WH330ke6//35NmjTJ9CQAAAAAF0EQQ6exLEuFhYUKh8OmpwBAtwmHw9q8ebP27dunefPm6YYbbjA9CQAAAMAlEMTQaSzLUnNzs8rKykxPAYBuEQqFtHHjRn3yySd66KGHNH78eNOTAAAAAFwGghg6zZAhQxQfH6/8/HzTUwCgy505c0ZPP/208vLytGDBAl177bWmJwEAAAC4TAQxdBq3262RI0fyHDEAMe/MmTNav3698vPztXDhQo0ePdr0JAAAAAAdQBBDp7IsS2VlZWpsbDQ9BQC6RHt7u9asWaMjR45o0aJFGjVqlOlJAAAAADqIIIZOZVmWJHFKDEBMamtr0+rVq3Xs2DEtXrxYI0eOND0JAAAAwBUgiKFTJSUlKT09nSAGIOa0trZq1apVKisr05IlSzRixAjTkwAAAABcIYIYOp1lWSosLFQ4HDY9BQA6RUtLi1asWKGKigotW7ZMw4cPNz0JAAAAwFUgiKHT+f1+NTc3q6yszPQUALhqzc3Nys3N1cmTJ5WVlaUhQ4aYngQAAADgKhHE0OmGDBmi+Ph45efnm54CAFelsbFROTk5qq2tVXZ2tgYNGmR6EgAAAIBOQBBDp3O73Ro5ciTPEQMQ1RoaGpSTk6OGhgZlZ2crPT3d9CQAAAAAnYQghi5hWZbKysrU2NhoegoAdFh9fb2CwaCam5sVCATUv39/05MAAAAAdCKCGLqEZVmSpMLCQsNLAKBjamtrFQwG1d7erkAgoL59+5qeBAAAAKCTEcTQJZKSkpSens61SQBRpaamRsFgUOFwWIFAQGlpaaYnAQAAAOgCBDF0GcuyVFBQoHA4bHoKAFzSqVOnFAwG5XK5FAgElJKSYnoSAAAAgC5CEEOX8fv9am5uVllZmekpAHBR1dXVeuqpp+Tz+RQIBNSnTx/TkwAAAAB0IYIYusyQIUMUHx/PtUkAEa2yslLBYFAJCQkKBALq3bu36UkAAAAAuhhBDF3G7XYrMzOTIAYgYp04cUI5OTlKSkpSdna2kpKSTE8CAAAA0A0IYuhSlmWptLRUjY2NpqcAwJeUlZUpJydHffr0UVZWlnr27Gl6EgAAAIBuQhBDl7IsS5JUWFhoeAkA/N3x48eVm5urtLQ0ZWVlKTEx0fQkAAAAAN2IIIYu1atXL6Wnp3NtEkDEOHr0qFasWKEBAwZo2bJlio+PNz0JAAAAQDcjiKHLWZalwsJChcNh01MAONyRI0e0cuVKDRo0SEuWLFFcXJzpSQAAAAAMIIihy1mWpaamJpWVlZmeAsDBCgsLtXr1ag0dOlSLFy9Wjx49TE8CAAAAYAhBDF1u6NChiouL49okAGPy8/O1Zs0ajRgxQosWLZLP5zM9CQAAAIBBBDF0ObfbrZEjRxLEABiRl5entWvXyrIsLViwQF6v1/QkAAAAAIYRxNAtLMtSaWmpGhsbTU8B4CCffvqpNmzYoNGjR+vhhx8mhgEAAACQRBBDN7EsS9Jnz/ABgO6wf/9+bdy4Uddee60eeugheTwe05MAAAAARAiCGLpFr169lJ6ezrVJAN1i7969euaZZzRhwgQ98MADcrv5nzsAAAAAf8dvCOg2lmWpsLBQtm2bngIghh09elRbtmzRxIkTdf/99xPDAAAAAPwDfktAt7EsS01NTSorKzM9BUAMGzZsmObNm6f77rtPLpfL9BwAAAAAEYgghm4zdOhQxcXFKT8/3/QUAFHsxIkTOnHixAU/b9u2xo0bRwwDAAAAcEEEMXQbt9utkSNH8hwxAFfsZz/7mR5++GFNnTpVv/jFL/TWW2/9w2tcLhcxDAAAAMBFEcTQrSzLUmlpqZqamkxPARBlNmzYoK1bt+qVV17RunXrdOLECa1evVrbtm0zPQ0AAABAlCGIoVtZliVJKiwsNLwEQLQJhUK64YYb1KNHD91444368Y9/rJSUFG3btk2HDh0yPQ8AAABAFCGIoVv16tVLAwYM4NokgMt29p1pExMTVV1drbq6OknS8OHDtXz5chUXF+u9994zOREAAABAlCGIodtZlqWCgoJzv+QCwIWcPHlSlZWVkqQ5c+bo1KlT+sY3vnHu85ZlacGCBXrxxRcVCoVMzQQAAAAQZQhi6HbXXHONMjIyeI4YgIv68Y9/rEAgoJkzZ+o3v/mNXC6XXnnlFeXl5Wnp0qXKy8uTJO3bt0+9e/eWx+MxvBgAAABAtHDZHNNBN7NtWy6XS+FwWG43TRbAP/rOd76jY8eO6a9//avy8vK0cOFCrVu3TtOnT1dzc7OWLl2qcDisU6dOyePx6LnnnlNiYqLp2QAAAACihNf0ADiPy+WSJGIYgK/09ttvq6ioSM8995zcbrfS09N11113nTsBlpCQoLVr16q8vFxlZWW66aabOB0GAAAAoEMoEgCAiDJ16lT9+7//u8LhsM6cOSNJCofD+vTTT8+9xufzadiwYZoyZQoxDAAAAECHEcQQkbjJCzhTOByWJN1yyy3yer1fil29e/eWJD322GN64403jOwDAAAAEBsIYogox48f15/+9Kdz1yoBOMv5V6nPxvHMzEwNGjRIP/zhD1VZWanbb7/dxDwAAAAAMYIgBuNeeuklBQIBDRgwQH6/X//93/+tiooK07MAdKMLnQo9G8iqq6t13333qaqqSps3b+7GZQAAAABiEUEMRuTk5GjcuHGKj4/XkiVL1N7erieffFKNjY0qKCjQgAEDuDYJOMD+/fslffZmG1/1Z/7sx2pqanTLLbcoGAx25zwAAAAAMcplUx1gwJ/+9CeVl5frG9/4hjIzM7/0uaamJv3tb3/T448/bmgdgO4wc+ZM1dTU6Je//KVmz54t6bMA9lVXpi/0cQAAAAC4El7TA+BM3/72t8/99dGjR7V161Y9//zzKigo0OHDh3X69Gm1t7fL5/MZXAmgq/z0pz9VW1ubli9frr/97W/yer26++67z50UOxu/vvWtb2nJkiWaOnWq4cUAAAAAYgknxGDMD37wA7344otqbGxUZmampk+frmnTpunWW2/lJAgQw0KhkPbs2aP+/fvL5XJp5cqV2rVrlx5//HHNnDnzS699++23iWEAAAAAOh1BDMb84Q9/UFJSku644w4NHz5cknT48GHt27dP9957r5KSkgwvBNBVvngCtKioSGvXrtWuXbv0i1/8QhMmTNDGjRt13333KS4uzvBSAAAAALGIIIaIUFJSouLiYr3yyiv6y1/+osWLF8vlcul3v/ud6WkAukFeXp62b9+ul19+WXv37tWjjz6qn//856ZnAQAAAIhRPEMMxoRCIa1evVrFxcUqLy9XY2OjkpKSFBcXJ7/frz//+c/68MMPNWnSJNNTAXSx0aNHq7GxUf/5n/+pb3zjG8QwAAAAAF2KIAZjPB6P8vLydOrUKV1zzTWyLEtf//rXFQqFNHnyZN177706cuSI6ZkAOsEXH5T/Ve8Yadu2fvrTn2rhwoX67W9/a2IiAAAAAAfhyiSMOnHihHr37q3ExMRzH9u+fbv++Mc/ql+/fpoxY4aysrIMLgTQXUpKSs49TxAAAAAAupLb9AA4W3p6uhITE5Wfn6+f//znGj9+vGbPnq2XXnpJPp9PM2bMMD0RQCf57W9/q82bN1/w88QwAAAAAN2FIAbjcnJydNttt+nVV1/VN7/5TTU3N2vGjBl67LHHNHToUIXDYdMTAXRAQ0ODXnrpJUnS+++/ryeeeEItLS2aOnWqHnjggS+9lkPKAAAAAEzgyiSMe+yxx3TDDTfoW9/61rmPPfHEE0pKStLixYsNLgPQUUVFRXrzzTe1atUqVVdXKxQK6b/+6780e/bsL72urq5OvXv3NrQSAAAAgNNxQgzG3XDDDfrwww8lSe3t7ZKk5cuXE8OAKFNSUqI77rhDM2fO1G9+8xsVFhaqd+/e52LYmTNnJEn19fX60Y9+pP3795ucCwAAAMDBCGIw7pvf/KZ+/etfS5J8Pp8k6ZlnnlF9fb3JWQA6qKKiQpMmTdKrr76q733ve9q8ebPKysq0cOFCSZLX69Xp06fl8Xj03e9+V+PGjTO8GAAAAIBTEcRgnM/n0yeffKKysrJzHzt69KgOHz5scBWAy9XW1iZJ8vv9ampq0ve//30tWrRIM2bM0J49e/Tuu+/q0Ucf1e7duzV16lSdOHFC11xzjeHVAAAAAJyMIIaIUFBQoPfee+/c3//whz/UpEmTDC4CcDkOHz6sf/7nfz53HTI5OVm33367SkpKtHv3bvXu3Vv79u1TXl6efvKTn+gHP/iBMjMzDa8GAAAA4HQ8VB8RIRQKyePxfOljtm3L5XIZWgTgchUVFampqUkJCQkaNmyYDh48qL/+9a/yer169NFHNX78eLW2tqq2tlb9+/c3PRcAAAAAOCGGyHB+DJNEDAMi2FtvvaVvfvObkqTMzEx9//vfV3Z2tk6ePKnx48dr4cKFsm1bf/nLX3TgwAHFxcURwwAAAABEDIIYogaHGYHIMWrUKOXm5urxxx+XJO3YsUP9+/dXIBBQRUWFpk2bpjlz5kj66uANAAAAACZxZRIRLxwO6/jx49q7d6/uv/9+03MAfK6srEzXXXedlixZoj/84Q+SpFmzZsnn8+l//ud/1L9/f9XU1CglJcXwUgAAAAD4Mk6IIeKc32jdbrds29ZPfvITffjhh4ZWATjfoEGD9NFHHyk3N1c/+MEPJEkvvPCCKisr9a1vfUuhUIgYBgAAACAieU0PAL7oxRdf1Lhx4zRw4ECdOXNGNTU1Ki0tVU1NjVwul7Zv3867TwIRJCMjQx988IEmTpyouLg4/epXv9Lbb7+tQ4cOcVUSAAAAQMQiiCGibNiwQU899ZR+9rOf6c0331RhYaFKSkrU2tqq8ePHa/z48aYnAjjPqFGj9MEHH+jaa69VYmKi/u3f/k1jxowxPQsAAAAALogghoiyfPly3XPPPXK73WppaZFlWXrooYc0efJkDRkyxPQ8AJ+rqKjQgAEDzv39mDFjtG/fPoOLAAAAAODy8VB9RJw+ffpo3bp1uueee/7hc+FwWG43j74DTHr//fe1bds2BQIBDRs2TC6Xy/QkAAAAAOgQTogh4jz88MNKTk6WJIVCIblcrnMRjBgGmPXuu+/qxRdf1JQpU4hhAAAAAKIWJ8QQcUpLS9WjRw/169fP9BQAX/DWW2/plVde0dSpUzVz5kxiGAAAAICoRRBDRAqFQhd8hzquTQLd74033tDrr7+uadOmafr06cQwAAAAAFGNqoCI9B//8R86cODAV36OGAZ0H9u29eqrr+r111/XjBkzNGPGDGIYAAAAgKhHWUBEmjZtmpKSkv7h47Zta//+/dqwYYOBVYCz2Latl156SW+++abuuusuTZs2zfQkAAAAAOgUXJlEVLBt+9yplLfeekvf/va3tXPnTvXp08fwMiA22bat7du36/3339c999yjyZMnm54EAAAAAJ2GE2KIWHPnzlVOTo7q6urOxbBQKKRbb71V1113nV588UXDC4HYZNu2nn/+eb3//vuaPXs2MQwAAABAzCGIIWK1t7dr+fLl+u53v6tgMChJ5x60P27cOL3xxhsG1wGxKRwO69lnn9WHH36o+++/XzfeeKPpSQAAAADQ6bymBwAXkp2drb59++rxxx/Xj3/8Yz355JN67LHH1KdPH7377rv63ve+Z3oiEFPC4bC2bNmi/fv3a968eRo/frzpSQAAAADQJXiGGCLWiRMnNG/ePL377ruSpNWrV2vz5s364IMP9NBDD+mXv/ylEhISDK8EYkMoFNKmTZt04MABPfjgg7ruuutMTwIAAACALkMQQ0S74YYbFAwGNWHCBElSS0uL4uPjDa8CYksoFNLTTz+tw4cPa/78+RozZozpSQAAAADQpQhiiGj5+fkaNmyY4uLizn3s6NGjeu+995SRkaGvfe1rBtcB0e/MmTPasGGDCgsLtWDBAo0aNcr0JAAAAADocgQxRIXi4mL9+c9/1vr161VXV6fJkycrISFBycnJ+uMf/6jExETTE4Go097ernXr1qmkpEQLFy6UZVmmJwEAAABAt+BdJhHxQqGQfve736myslJ/+tOfdPz4cW3dulW///3vVVlZqU2bNpmeCESdtrY2rVmzRiUlJVq0aBExDAAAAICjEMQQ8f7617/qyJEj+uUvf6nZs2crMTFRXq9XQ4cO1Z133ql33nnH9EQgqrS2tmrVqlUqLS3V0qVLlZmZaXoSAAAAAHQrr+kBwKXExcUpKSlJQ4cOPfexY8eO6bnnntMTTzyhJ5980uA6ILq0tLRo1apVqqqq0tKlS7/05woAAAAAnIJniCHilZWVafbs2XrwwQfl8XjU3Nys6upqtba26v7779cDDzxgeiIQFZqbm7Vy5UqdOnVKS5cu1eDBg01PAgAAAAAjCGKICnv37tXvf/97paWlKSEhQenp6Zo0aZKmTJliehoQFZqamrRixQrV1tZq2bJlGjhwoOlJAAAAAGAMQQxRxbZttbS0KCEhwfQUIGo0NDRoxYoVamxs1LJlyzRgwADTkwAAAADAKIIYooZt23K5XKZnAFGlvr5eubm5amlpUVZWlvr162d6EgAAAAAYRxBD1Dlz5oxcLpc8Ho/pKUBEq62tVW5urtrb25Wdna20tDTTkwAAAAAgIrhNDwA6orGxUb/5zW+Ul5dnegoQ0U6fPq1gMKhQKKTly5cTwwAAAADgCwhiiCo9e/ZUamqqCgoKTE8BItapU6cUDAblcrkUCASUkpJiehIAAAAARBSCGKKOZVkqKCgQt32Bf1RdXa1gMCiv16tAIKDk5GTTkwAAAAAg4hDEEHUsy1JDQ4MqKipMTwEiSlVVlYLBoOLj45Wdna3evXubngQAAAAAEYkghqgzbNgw+Xw+5efnm54CRIyKigoFg0H17NlT2dnZ6tWrl+lJAAAAABCxCGKIOl6vV5mZmTxHDPhceXm5cnJy1Lt3b2VnZ6tnz56mJwEAAABARCOIISpZlqVjx46ppaXF9BTAqOPHjysnJ0epqanKyspSYmKi6UkAAAAAEPEIYohKlmXJtm0VFhaangIYc/ToUa1YsUL9+/fXsmXLlJCQYHoSAAAAAEQFghiiUnJysvr168e1SThWcXGxVq5cqYEDB2rp0qWKi4szPQkAAAAAogZBDFHLsiwVFBTItm3TU4BuVVRUpFWrVmno0KFasmSJevToYXoSAAAAAEQVghiilmVZamhoUEVFhekpQLfJz8/X6tWrlZGRoUceeUQ+n8/0JAAAAACIOgQxRK1hw4bJ5/MpPz/f9BSgWxw6dEjr1q2TZVlauHAhMQwAAAAArhBBDFHL6/UqMzOT54jBEQ4cOKD169dr1KhRevjhh+X1ek1PAgAAAICoRRBDVLMsS8eOHVNLS4vpKUCX2b9/v55++mmNHTtW8+fPl8fjMT0JAAAAAKIaQQxRzbIs2batoqIi01OALrF3715t2rRJ48eP17x58+R2869tAAAAALha/GaFqJacnKy+ffvyHDHEpI8++khbtmzR9ddfr7lz5xLDAAAAAKCT8NsVop5lWSosLJRt26anAJ3mgw8+0NatW3XjjTdqzpw5crlcpicBAAAAQMwgiCHq+f1+1dfXq6KiwvQUoFO89957euGFFzR58mTNmjWLGAYAAAAAnYwghqg3bNgw+Xw+3m0SMeGtt97Sjh07NHXqVN19993EMAAAAADoAgQxRD2v16sRI0YQxBD13njjDb3yyiuaNm2aZs6cSQwDAAAAgC5CEENMsCxLR48eVUtLi+kpQIfZtq1XX31Vr7/+umbMmKEZM2YQwwAAAACgCxHEEBP8fr9s21ZRUZHpKUCH2Latl19+WW+++abuvPNOTZs2zfQkAAAAAIh5BDHEhOTkZPXt21f5+fmmpwCXzbZt7dixQ++8847uvvtuTZ061fQkAAAAAHAEghhihmVZKiwslG3bpqcAl2Tbtl544QXt2rVLs2bN0pQpU0xPAgAAAADHIIghZliWpfr6elVUVJieAlxUOBzW1q1btXv3bs2ZM0c33XST6UkAAAAA4CgEMcSM4cOHy+fz8W6TiGjhcFhbtmzR3r179cADD2jixImmJwEAAACA4xDEEDO8Xq9GjBhBEEPECoVC2rRpk/bv368HH3xQEyZMMD0JAAAAAByJIIaYYlmWjh49qpaWFtNTgC8JhULauHGjDhw4oPnz5+u6664zPQkAAAAAHIsghpji9/tl27aKiopMTwHOOXPmjNavX6/Dhw9rwYIFGjt2rOlJAAAAAOBoBDHElOTkZPXt25drk4gY7e3tWrt2rYqKivTII4/ommuuMT0JAAAAAByPIIaYY1mWCgoKZNu26SlwuLa2Nq1Zs0YlJSVatGiRLMsyPQkAAAAAIIIYYpBlWaqvr1dlZaXpKXCw1tZWrV69WsePH9eSJUuUmZlpehIAAAAA4HMEMcSc4cOHy+fzKT8/3/QUOFRLS4tWrlypEydOaNmyZcrIyDA9CQAAAADwBQQxxByv16sRI0bwHDEY0dzcrBUrVqi6ulrLli3T0KFDTU8CAAAAAJyHIIaYZFmWjh07ptbWVtNT4CBNTU3Kzc1VTU2NsrKyNHjwYNOTAAAAAABfgSCGmGRZlsLhsIqKikxPgUM0NjYqJydHdXV1ys7O1sCBA01PAgAAAABcAEEMMSklJUVpaWk8Rwzdor6+XsFgUE1NTQoEAhowYIDpSQAAAACAiyCIIWZZlqWCggLZtm16CmJYXV2dgsGgWltbFQgE1K9fP9OTAAAAAACXQBBDzPL7/aqvr1dlZaXpKYhRp0+fVjAYVCgUUiAQUFpamulJAAAAAIDLQBBDzBo+fLh8Ph/vNokucerUKQWDQUlSIBBQamqq2UEAAAAAgMtGEEPM8nq9ysjI4Dli6HQnT55UMBiUx+NRIBBQcnKy6UkAAAAAgA4giCGm+f1+HTt2TK2traanIEZUVVUpGAwqLi5OgUBAvXv3Nj0JAAAAANBBBDHENMuyFA6HVVRUZHoKYkBFRYWCwaASExMVCATUq1cv05MAAAAAAFeAIIaYlpKSorS0NK5N4qqVl5crJydHvXv3VnZ2tnr27Gl6EgAAAADgChHEEPMsy1JBQYFs2zY9BVGqtLRUubm5SklJUVZWlhITE01PAgAAAABcBYIYYp7f71d9fb0qKytNT0EUOnbsmHJzc9WvXz8tW7ZMCQkJpicBAAAAAK4SQQwxb/jw4fL5fCooKDA9BVGmuLhYK1as0MCBA7VkyRLFx8ebngQAAAAA6AQEMcQ8r9erjIwMghg6pKioSKtWrdKQIUO0ePFixcXFmZ4EAAAAAOgkBDE4gmVZOnr0qFpbW01PQRQoKCjQmjVrlJGRoUWLFqlHjx6mJwEAAAAAOhFBDI7g9/sVDodVVFRkegoi3KFDh7R27VplZmZq4cKF8vl8picBAAAAADoZQQyOkJKSorS0NK5N4qIOHDig9evXa9SoUVqwYIG8Xq/pSQAAAACALkAQg2NYlqWCggLZtm16CiLQJ598oqefflpjx47V/Pnz5fF4TE8CAAAAAHQRghgcw7Is1dXVqaqqyvQURJh9+/bpmWee0bhx4zRv3jy53fyrEQAAAABiGb/1wTEyMjLk9XqVn59vegoiyEcffaTNmzfr+uuv19y5c4lhAAAAAOAA/OYHx/B6vRoxYgTPEcM5H3zwgbZu3aobb7xRc+bMIYYBAAAAgEPw2x8cxbIsHT16VK2traanwLD33ntPL7zwgiZPnqxZs2bJ5XKZngQAAAAA6CYEMTiKZVkKh8M6cuSI6Skw6O2339aOHTt0yy236O677yaGAQAAAIDDEMTgKKmpqUpNTeU5Yg62c+dOvfzyy5o2bZruvPNOYhgAAAAAOJDX9ACgu/n9fh08eFC2bRNDHMS2bb3++uvauXOnpk+frttvv930JAAAAACAIZwQg+NYlqW6ujpVVVWZnoJuYtu2Xn75Ze3cuVN33nknMQwAAAAAHI4gBsfJyMiQ1+vl2qRD2LatHTt26J133tHdd9+tqVOnmp4EAAAAADCMIAbH8Xq9GjFihAoKCkxPQRezbVsvvPCCdu3apVmzZmnKlCmmJwEAAAAAIgBBDI5kWZaOHj2q1tZW01PQRWzb1tatW7V7927NmTNHN910k+lJAAAAAIAIQRCDI1mWpXA4rCNHjpiegi4QDoe1ZcsW7d27Vw888IAmTpxoehIAAAAAIIIQxOBIqampSk1N5TliMSgcDmvTpk36+OOP9eCDD2rChAmmJwEAAAAAIozX9ADAFMuylJeXJ9u25XK5TM9BJwiFQtq4caMOHTqk+fPna+zYsaYnAQAAAAAiECfE4Fh+v191dXWqqqoyPQWd4MyZM1q/fr0OHz6sBQsWEMMAAAAAABdEEINjDR8+XF6vl3ebjAHt7e1at26dCgsL9cgjj+iaa64xPQkAAAAAEMEIYnAsn8+njIwMgliUa29v15o1a1RcXKzFixfLsizTkwAAAAAAEY4gBkezLEslJSVqbW01PQVXoK2tTatWrdLx48e1ZMkSZWZmmp4EAAAAAIgCBDE4mt/vVzgc1pEjR0xPQQe1tLRo5cqVKi8v19KlS5WRkWF6EgAAAAAgShDE4GipqalKTU3l2mSUaW5u1sqVK1VVVaWsrCwNGzbM9CQAAAAAQBTxmh4AmGZZlg4dOiTbtuVyuUzPwSU0NTVpxYoVqq2tVVZWlgYOHGh6EgAAAAAgynBCDI5nWZZqa2tVXV1tegouobGxUTk5Oaqrq1N2djYxDAAAAABwRQhicLyMjAx5vV7l5+ebnoKLqK+vVzAYVFNTkwKBgAYMGGB6EgAAAAAgShHE4Hg+n08ZGRk8RyyC1dXVKRgMqrW1VYFAQP369TM9CQAAAAAQxQhigD67NllSUqLW1lbTU3Ce06dPKxgMKhQKKRAIKC0tzfQkAAAAAECUI4gBkvx+v8LhsI4cOWJ6Cr6gpqZGwWBQtm0rEAgoNTXV9CQAAAAAQAwgiAGSUlNTlZqayrXJCHLy5Ek99dRT8ng8Wr58uZKTk01PAgAAAADECIIY8DnLslRQUCDbtk1PcbyqqioFg0HFxcUpEAiod+/epicBAAAAAGIIQQz4nGVZqq2tVXV1tekpjlZRUaFgMKjExERlZ2erV69epicBAAAAAGIMQQz4XEZGhrxer/Lz801Pcazy8nLl5OSod+/eys7OVlJSkulJAAAAAIAYRBADPufz+ZSRkcFzxAwpLS1Vbm6uUlJSlJWVpcTERNOTAAAAAAAxiiAGfIFlWTp69Kja2tpMT3GUY8eOacWKFerbt6+WLVumhIQE05MAAAAAADGMIAZ8gWVZCoVCOnLkiOkpjlFSUqIVK1YoPT1dS5cuVXx8vOlJAAAAAIAYRxADviAtLU0pKSk8R6ybFBUVaeXKlRoyZIgWL16suLg405MAAAAAAA7gNT0AiDSWZenw4cOybVsul8v0nJhVUFCgdevWafjw4Vq4cKF8Pp/pSQAAAAAAh+CEGHAev9+v2tpaVVdXm54Ssw4dOqS1a9cqMzNTjzzyCDEMAAAAANCtCGLAeTIyMuTxeHi3yS5y8OBBrV+/XqNGjdKCBQvk9XJQFQAAAADQvQhiwHl8Pp8yMjIIYl3gk08+0YYNGzRmzBg99NBD8ng8picBAAAAAByIIAZ8Bb/fr5KSErW1tZmeEjP27dunZ555RuPGjdODDz5IDAMAAAAAGEMQA76CZVkKhUI6cuSI6SkxYc+ePdq8ebMmTJiguXPnyu3mXz0AAAAAAHP4rRT4CmlpaUpJSeHaZCfYvXu3nn32Wd144426//77iWEAAAAAAON4mjVwAZZlKT8/X7Zty+VymZ4TlXbt2qXt27dr8uTJuvvuu/nPEQAAAAAQETiqAVyA3+/X6dOnVV1dbXpKVHr77be1fft23XLLLcQwAAAAAEBEIYgBF5CRkSGPx8O1ySuwc+dOvfzyy7rtttt05513EsMAAAAAABGFIAZcgM/nU0ZGBkGsA2zb1muvvabXXntN06dP1x133EEMAwAAAABEHIIYcBGWZamkpERtbW2mp0Q827b1yiuvaOfOnZo5c6Zuv/1205MAAAAAAPhKBDHgIvx+v0KhkI4cOWJ6SkSzbVs7duzQ22+/ra9//eu69dZbTU8CAAAAAOCCCGLARaSmpiolJYVrkxdh27ZeeOEF7dq1S7NmzdLNN99sehIAAAAAABflNT0AiGQul0uWZSk/P1+2bfM8rPPYtq2tW7dqz549mjNnjiZOnGh6EgAAAAAAl8QJMeASLMvS6dOndfLkSdNTIko4HNaWLVu0d+9ezZ07lxgGAAAAAIgaBDHgEkaMGCGPx6P8/HzTUyJGOBzWpk2b9PHHH2vevHm6/vrrTU8CAAAAAOCyEcSAS/D5fMrIyOA5Yp8LhULauHGjDhw4oPnz52vcuHGmJwEAAAAA0CEEMeAyWJalkpIStbW1mZ5i1JkzZ7Rhwwbl5eXp4Ycf1tixY01PAgAAAACgwwhiwGWwLEuhUEjFxcWmpxjT3t6udevWqaCgQI888ohGjx5tehIAAAAAAFeEIAZchrS0NCUnJzv2OWLt7e1au3atiouLtXjxYvn9ftOTAAAAAAC4Yl7TA4Bo4HK55Pf7lZ+fL9u25XK5TE/qNm1tbVqzZo1KS0u1ZMkSZWRkmJ4EAAAAAMBV4YQYcJksy9Lp06d18uRJ01O6TWtrq1auXKmysjItXbqUGAYAAAAAiAkEMeAyjRgxQh6PxzHvNtnS0qIVK1aosrJSy5Yt07Bhw0xPAgAAAACgUxDEgMvk8/mUkZHhiCDW1NSk3NxcnTp1StnZ2RoyZIjpSQAAAAAAdBqCGNABlmWpuLhYbW1tpqd0mcbGRuXm5qq2tlZZWVkaOHCg6UkAAAAAAHQqghjQAZZlKRQKqbi42PSULlFfX6+cnBw1NDQoOztb6enppicBAAAAANDpCGJAB6SlpSk5OVn5+fmmp3S6uro65eTkqKWlRYFAQP379zc9CQAAAACALuE1PQCIJi6XS5ZlqaCgQLZty+VymZ7UKWpra5WTk6NwOKxAIKDU1FTTkwAAAAAA6DKcEAM6yO/36/Tp0zp58qTpKZ2ipqZGTz31lGzbJoYBAAAAAByBIAZ0UEZGhjweT0y82+TJkycVDAbl8XgUCASUnJxsehIAAAAAAF2OIAZ0UI8ePTR8+PCoD2JVVVUKBoPq0aOHAoGA+vTpY3oSAAAAAADdgiAGXAHLslRcXKz29nbTU65IZWWlcnJylJiYqOzsbPXq1cv0JAAAAAAAug1BDLgCfr9foVBIR44cMT2lw8rLyxUMBtWrVy9lZ2crKSnJ9CQAAAAAALoVQQy4AmlpaUpOTo66a5OlpaXKzc1VSkqKsrKylJiYaHoSAAAAAADdzmt6ABCNXC6XLMtSQUGBbNuWy+UyPemSjh07plWrVqlfv35asmSJ4uPjTU8CAAAAAMAITogBV8iyLNXU1OjUqVOmp1xSSUmJVq5cqQEDBmjp0qXEMAAAAACAoxHEgCs0YsQIeTwe5efnm55yUUeOHNGqVas0ePBgLVmyRHFxcaYnAQAAAABgFFcmgSvUo0cPDR8+XAUFBZoyZcqXPheybdW2htUetnXGthWyJY9L8rpc8rld6hPnlqcbrlkWFBRo3bp1Gj58uBYuXCifz9fl3xMAAAAAgEhHEAOugt/v12uvv66KpnadaA6poumMyhrbVdUSUsi+8D/ncUn94j0a1NOnAYlepSd41TfB06mR7PDhw1q/fr0yMzO1YMECeb38cQcAAAAAQJJctm1f5Nd2ABdS3tiu3ZVNOni6TWF9FrLcksId+BpffL3HJY1JidOkfvEamHh1J7kOHjyop59+WqNGjdL8+fPl8Xiu6usBAAAAABBLCGJAB7SHbR2sadXuqmZVNofkktSZf4DOfr0BCR5N6pegMSlx8rk7dmrsk08+0TPPPKOxY8dq3rx5xDAAAAAAAM5DEAMuQ3vY1rsnmrS7qkVtYbvTQ9j5zn79Hm6XbuwXr5vTEy8rjH388cfavHmzxo0bp7lz58rt5n0zAAAAAAA4H0EMuITSxnZtLa5XbVu4SyPYhbgk9enh1pyMXhrc88JXKffs2aNnn31W119/vebMmUMMAwAAAADgAghiwAW0h229Wd6k9yubu/xE2KWc/f5f65+g2wb+42mx3bt36/nnn9ekSZM0e/ZsubrhHSwBAAAAAIhWBDHgK5g+FXYxyeedFtu1a5e2b9+ur33ta7rnnnuIYQAAAAAAXAJBDDhPXk2rthTXSzJ7KuxCzuauuRm9dOrgh3rppZd0880366677iKGAQAAAABwGQhiwBfsO9mibUcbTM+4TLba97ymqRl9NWPGDGIYAAAAAACXyWt6ABApoiuGfcZ3wx1KG5ZEDAMAAAAAoAN4GzpAn12TjLYYdvby5LajDcqraTW8BQAAAACA6EEQg+OVNrafe2ZYtNpSXK/SxnbTMwAAAAAAiAoEMThae9jW1iiPYWdtLa5Xe5hHAgIAAAAAcCkEMTjam+VNqm0LR+S7SXaELel0W1hvlTeZngIAAAAAQMQjiMGxShvb9X5lc9THsC/aVdnM1UkAAAAAAC6BIAZHOntVMtbem9Elrk4CAAAAAHApBDE40rsnYuOq5PnOXp189wRXJwEAAAAAuBCCGBynPWxrd1VLzMWwL/qwqoVTYgAAAAAAXABBDI5zsKZVbTEei1rDtvJqWk3PAAAAAAAgIhHE4Di7q5pj7tlh53Pps58TAAAAAAD8I4IYHKW8sV2VzaGYvi4pffYssYrmkMp5x0kAAAAAAP4BQQyO8mF1S8yfDjvLLemj6hbTMwAAAAAAiDgEMThGyLZ1sKY15k+HnRWWdKCmVWHbKT8xAAAAAACXhyAGx6huDinksDYUsqXqlpDpGQAAAAAARBSCGBzjRPOZK/5nn/inufrXif204aff6cRFf7fhp9/Rv07spyf+aW6nf+0TTVf+cwMAAAAAEIsIYnCMiqYzHfov/KZf/UC/unOswuFwl206K3XICA29bpL6Z17TqV/XLYIYAAAAAADn85oeAHSXssZ2XW7asm1beTt3aPS0r8vt7vpuPPOfvq+Z//T9Tv+6YX32cwMAAAAAgL8jiMERQratyg48S+v4p3tUV3VCY6fPuuBrmmpr9NKff62DO3eo/mSlEnunyJoyXXd/+ydKHjjk3OveWfuk3njq92ppqNOY6fdqyNjr9fz/+b8lST967kOlDBqmDT/9jj7auk4jJt2ix/5niyTpXyf2kyTN+u7PVZr3sQ6+sV3xPXtp8sMB3fHNy49nVS0hhW1bbpdT3l8TAAAAAICLI4jBEWpbwwp34IH6B157QT0SEmVNnvaVn29vbdET/zRXFQUH5fZ61XfYSJ0qLdHeFzao6IM39fja15SU0lcH39ihrb/9V0lSz+Q0Fe95Twdf39ah7Tv+8J9KTE6Vr0e86qpO6KU//0ZDr5sk/5Tpl/XPh2zpdGtYqfGeDn1fAAAAAABiFc8QgyO0d6SGSTrwxnb5b54hX1z8V35+3/ZnVFFwUJK0+H//Td99+i39r//vObncbtVVndC7a/8mSdqZ8wdJUsrg4frh1t364bO7NXjs9R3aMmjMBP3o+Y/03Y1vy+P1SZIK39/Zoa/R0Z8fAAAAAIBYRhCDI5yxLz8IVR8tUmXRoYtelzx+YK8kyRefqGtnfPa6wWMmqN9wS5JUevCzz1cUHZIkXXPLHYrrmSSP16vrZt7Xoe3jvz5XXl8P9UxJU8/UvpKkhpNVHfoaoQ78/AAAAAAAxDqCGBwh1JHrkq9vk9vr1ejb7uq8AV94fpfdwTiV0KvPub92ez675WyrY1/jDD0MAAAAAIBzCGJwBE8Hnid/8PVtyrh+ihL7pFzwNUM+v/bY3tKkT197QZJUenCfqkoKJEmDx3z2+QEjR0uS8t97XW3NjQqHQjrw+eu7k5fn6QMAAAAAcA4P1YcjeC/zHRYbaqpV8vEHmv39X170dRPueVBvrfyLKgrztPrHj557qL4dDqt3v3Td/MijkqRpWd9R8Z73dPJokf6fOTfJ06OHmk7XXPXP01Ee3mESAAAAAIBzOCEGR/C5Ly8I5b2xQ3Y4rLG333vxrxcXr8eefFZTHl6uXmn9VX20UPE9e+n6WQ/rW8FtSkr57FlfY26/W3N+9Gv16jtArU2NGjbuRk3/xr+c+zreCzy0v7Nd7s8PAAAAAIATuOyOPtAIiEIh29b/2XdSl3qzxdzvLtPpE8f1L2te65zv296uuqpypQwaJkkKh0IK/ssi5b/7mnr1HaB/3bFfri4+veVxSd+fkCY3p8QAAAAAAJDElUk4hMflUv94j040hy76uuETvqbJ87M77fu2tTTp/537NQ0ec7169e2vEwUHdep4sSTprn/+v7o8hklSv3gPMQwAAAAAgC8giMExBvX0qbI5pPBFXnN74PFO/Z7eHnG6ZuqdOn5gj8ryPpYvPkGZN07V1CX/S2Nvv6dTv9dXceuznxsAAAAAAPwdVybhGPtOtmjb0QbTM7rdrGFJGp/WPc8qAwAAAAAgGvBQfThGeoIzD0SmJzrz5wYAAAAA4EIIYnCMvgkeeRz2KC2PS+ob7zE9AwAAAACAiEIQg2N4XC6NSYmTU5qYW9LYlDgeqA8AAAAAwHkIYnCUSX3j5ZSH5oUlTezHs8MAAAAAADgfQQyOMrCnT/0TPDF/SswlaUCCRwMTeYdJAAAAAADORxCD49zYLyHmT4nZ+uznBAAAAAAA/4ggBscZkxKnHu7YPiMW53ZpdEqc6RkAAAAAAEQkghgcx+d26cZ+8TF9bXJSv3j5Yjz6AQAAAABwpQhicKSb0xPVp4c75qKYS1JKnFu3pCeangIAAAAAQMQiiMGRfG6X5mT0irlnidmS7hveS15OhwEAAAAAcEEEMTjW4J4+fa1/QkydEpvcP0GDe/LOkgAAAAAAXAxBDI5228DYuDp59qrkbQO5KgkAAAAAwKUQxOBoZ69OxgKuSgIAAAAAcHkIYnC8wT19mhvlUWzuiF5clQQAAAAA4DIRxABJo1PidO+wJNMzrsi9w5I0OjnO9AwAAAAAAKIGQQz43IS0+KiLYvcOS9KEtHjTMwAAAAAAiCou27Zt0yOASJJX06otxfWSpEj8w3H2KWFzR/TiZBgAAAAAAFeAIAZ8hdLGdm0trldtWzjiolhyD7fmZPDMMAAAAAAArhRBDLiA9rCtN8ub9H5ls1wye1rs7Pef3D9Btw5MlI93kwQAAAAA4IoRxIBLiITTYpwKAwAAAACg8xDEgMvQHrb17okmfVjVotaw3eUnxs5+/Ti3S5P6xevmdE6FAQAAAADQWQhiQAe0h20drGnVh1XNqmgOdXoYc0sKSxqQ4NGN/RI0OiWOEAYAAAAAQCcjiAFXqLyxXR9Vt+hATatCn/8pOhu0LtcXX+9xSWNT4jSxX7wGJnI1EgAAAACArkIQA65S2LZV3RLSiaYzOtF0RmWN7apqCZ2LZF/F45L6xXs0qKdP6YlepSd61TfeI7eL02AAAAAAAHQ1ghjQBcK2rdOtYbWHbYVsW2dsyeuSPC6XfG6XkuPcxC8AAAAAAAwhiAEAAAAAAMBR3KYHAAAAAAAAAN2JIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAAByFIAYAAAAAAABHIYgBAAAAAADAUQhiAAAAAAAAcBSCGAAAAAAAABzl/wf/aLOop6H71gAAAABJRU5ErkJggg==",
"text/plain": [
"